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ABSTRACT 
A simplified fluid-structure interaction model, consisting of a cylinder tethered by a spring system 
interacting dynamically with an incompressible two-dimensional lid-driven cavity flow, is solved using 
the immersed boundary method. Results show that when the spring forces are weaker than the fluid 
drag force, the springs stretch freely and the cylinder motion is the direct result of the fluid dynamics 
action. For higher values of spring forces, the cylinder motion reaches a maximum displacement, and 
the spring forces induce the cylinder to an oscillatory movement damped by the fluid drag forces. 
Subsequently the amplitude of the displacement decreases. The cylinder motion is restricted within the 
mainstream fluid flow, where the maximum displacement reduces as the Reynolds number increases. 
Keywords:  computational fluid dynamics, immersed boundary method, fluid-structure interaction. 

1  INTRODUCTION 
A lot of research is going on in the field of computational fluid dynamics (CFD) in order to 
balance the need to model increasingly complex boundary conditions and achieve highly 
accurate results at a minimum amount of computational time and resources [1]. The great 
majority of engineering fluid flow problems are characterized by complex geometries, which 
are often associated with the presence of solid, moving or flexible walls. 
     Most situations encountered in engineering practice involve complex geometries which 
are not fit for Cartesian grids and the choice of grid is not at all trivial. In order to deal with 
complex geometries, whole families of numerical methods have been developed. Body-fitted 
coordinate grids, such as curvilinear grids, non-orthogonal grids and non-structured grids, 
are usually employed. Unfortunately grid generation for complex geometries is generally an 
issue since it consumes a lot of user time especially when commercial codes are not 
employed. 
     One alternative to body-fitting meshes is the increasingly popular immersed boundary 
(IB) method. The immersed boundary method was pioneered by Peskin [2] in a paper on 
simulation of blood flowing through cardiac valves, where biological deformable tissue 
interact with the viscous flow. Since then, the method has experienced successive refinements 
and modifications, attracting considerable interest as an important tool for solving general 
fluid–fluid or fluid–solid interaction problems [3]–[6]. 
     The distinguishing quality of an IB method is to simulate an interface inside a flow by 
adding a force field to discretised Navier–Stokes equations. The embedded interface is 
represented by an arbitrary Lagrangian mesh whereas the flow domain is usually discretised 
by a simple Eulerian orthogonal grid. An interpolation function transfers the information 
from one domain to another and back. 
     Borges et al. [7] applied the direct forcing method [4] in order to investigate Newtonian 
laminar flow through a three-dimensional sudden contraction using Cartesian meshes. To 
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compute the transfer functions between the Eulerian and Lagrangian grids, the moving-least-
square (MLS) approximation [5] was employed. Comparison between numerical and 
experimental velocity profiles has shown good agreement. 
     The advantages of IB method are interesting for fluid-structure interaction where the body 
motion or body deformation does not imply the need for grid restructuring at every single 
time step. Fluid-structure interaction (FSI) problems occur in many areas of engineering and 
represent one of the greatest challenges of our time. 
     Fluid-structure interaction problems can be solved either monolithically, by solving the 
flow and structure equations simultaneously, or in a partitioned way, having separate solvers 
for the fluid flow equations and the structural equations. The main advantage of the 
monolithic approach is that no coupling iterations within the time step are required. On the 
other hand, existing flow solvers and structural solvers can be employed in a partitioned 
simulation, reducing software development efforts and improving manageability. 
Furthermore, this approach can solve FSI problems that do not require matching meshes at 
the interfaces between the solid and the fluid [8]. Degroote et al. [9], [10] compared the 
monolithic and partitioned approaches and reported that the performance of the two 
approaches was problem-dependent. 
     Nowadays, FSI simulations are widely used in industry. In the aerospace industry, FSI is 
used in order to study flutter on control surfaces, lift devices and also turbo machinery blades. 
On the other hand FSI is used in the renewable energy industry to investigate wind turbine 
behavior and also wave-energy converters. Parachute dynamics is another interesting field as 
large deformations appear. The design and analysis of artificial heart valves, the prediction 
of the rupture of aneurysms or of the outcome of surgery also rely extensively on FSI 
simulations in patient-specific geometries [9].  
     The difficulty of developing mathematical models which adequately represent the 
complexity of fluid-structure interaction problems, has led to simplified physical models in 
order to initiate the study and for a better understanding of the phenomena involved. One of 
the strategies for the development of simplified models was the proposal where the structure 
is represented by a body, spring and damper assembly. As an example, important knowledge 
has been acquired on the vortex-induced vortex vibration problem (VIV) considering the 
flow on oscillating cylinders [11]–[13]. 
     Campregher [14] employed the physical virtual model originally proposed by Lima e 
Silva et al. [3] to study the flow around a stationary cylinder. Results were validated against 
well reported benchmarks in published literature. The study was then extended to a fluid-
structure interaction problem using the partitioned approach. The dynamic system chosen 
was composed by a cylinder tethered by springs, immersed in the flow. This study produced 
interesting results.  
     This work presents a simplified fluid-structure problem where the cylinder, represented 
by the multi-direct forcing of Wang et al. [6], is tethered by springs immersed in an 
incompressible two-dimensional Newtonian lid-driven cavity flow, where fluid-structure 
interaction takes places. 

2  MATHEMATICAL DESCRIPTION 

2.1  Governing equations for fluid flow 

This work is restricted to incompressible Newtonian fluid flows which are governed by 
Navier–Stokes and continuity equations. In the physical space and relative to an inertial 
reference frame these equations are 
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where 𝑢௜ሺ𝑥⃗, 𝑡ሻ and 𝑝ሺ𝑥⃗, 𝑡ሻ are the velocity and pressure fields, respectively; 𝑓௜ሺ𝑥⃗, 𝑡ሻ is the 
force field, 𝜌 is the density and 𝜈 is the kinematic viscosity. The term 𝑓௜ሺ𝑥⃗, 𝑡ሻ is the external 
force exerted on the flow field which is the mutual interaction force between fluid and 
immersed boundary expressed as follows 

 𝑓௜ሺ𝑥⃗, 𝑡ሻ ൌ ׬ 𝐹௞ሺ𝑥௞ሬሬሬሬ⃗ , 𝑡ሻ
୻ 𝛿ሺ𝑥⃗ െ 𝑥௞ሬሬሬሬ⃗ ሻ𝑑𝑥௞, (3) 

where 𝛿ሺ𝑥௞ሬሬሬሬ⃗ െ 𝑥⃗ሻ is a distribution function, 𝑥௞ሬሬሬሬ⃗  is the position of the Lagrangian markers set 
at the immersed boundary, 𝑥⃗ is the position of the computational Eulerian mesh and 𝐹௞ሺ𝑥௞ሬሬሬሬ⃗ , 𝑡ሻ 
is the force exerted on the Lagrangian marker 𝑥௞ሬሬሬሬ⃗ . Fig. 1 illustrates the distribution of the 
Lagrangian force to adjacent Eurelian volumes. 
 

 

Figure 1:  Distribution of the Lagrangian force to adjacent Eulerian volumes (shaded). 

3  NUMERICAL METHODS 
The governing eqns (1) and (2) are discretized by the finite volume method, where the 
advective and diffusive terms are discretised using a central differencing scheme, in a 
staggered arrangement, as proposed by Patankar [15]. In a simple rectilinear mesh 
discretization, the components u and v are positioned in the volume’s normal faces in the x 
and y directions respectively. Scalar values, as the pressure, are located at the volume center. 
The discretization in time was performed by a Runge–Kutta second order scheme. Pressure–
velocity coupling uses the two-step fractional method of Kim and Moin [16]. The solution of 
the Poisson equation is performed by Successive Over Relaxation (SOR) iterative method. 
     The velocity field is initially estimated as 𝑢௜

∗, in eqn (4) 
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     The velocity u୧
୲ା୼୲ is estimated using 

 𝑢௜
௧ା୼௧ ൌ  𝑢௜
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where the pressure fluctuation 𝑝ᇱ is determined by the solution of a Poisson equation in the 
form of 
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leading to the pressure 𝑝௧ା୼௧ estimation through 

𝑝௧ା୼௧ ൌ 𝑝ᇱ ൅ 𝑝௧. (7) 

3.1  Mathematical model for the immersed interface 

The Lagrangian force field is calculated by the direct forcing method proposed by Uhlmann 
[4]. This method enables the modeling of the wall boundary condition in the immersed 
interface without introducing any ad hoc constants. The Lagrangian force, F୧ሺx୩ሬሬሬ⃗ , tሻ, is 
calculated through the momentum equation (eqn (8)) over a fluid particle in the fluid–solid 
interface. A force F୧ሺx୩ሬሬሬ⃗ , tሻ is imposed on the Lagrangian marker to equate its velocity to the 
desired velocity u୧ ୍୆୑ at the immersed boundary 
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 The Lagrangian force for the marker 𝑥௞ is determined using 
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where 𝑢~ is a temporary parameter (Wang et al. [6]) and Δ𝑡 is the time step. Eqn (9) can be 
decomposed into two complementary equations 
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where u୧ ୍୆୑ is the immersed boundary velocity obtained from the fluid-structure interaction. 
Under the effect of the force, the velocity on the Lagrangian marker 𝑥௞ at time 𝑡 ൅ Δ𝑡 ൫𝑢௞ ௜

௧ା୼௧൯ 
can be modified to the desired velocity u୧ ୍୆୑ (Wang et al. [6]). 
     A distribution function 𝐷௛ is applied to spread the two-way coupling between the Eulerian 
grid and the Lagrangian markers at the immersed boundary 𝑥௞. This distribution function is 
determined from its surrounding Eulerian grid nodes 𝑥௜. The velocity on the Lagrangian 
marker is calculated as 
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where 𝐷௛ is the distribution function, ℎ is the characteristic length associated to the Eulerian 
mesh size, 𝑟௫ ൌ

௫ೖି௫

௛
 and 𝑟௬ ൌ

௬ೖି௬

௛
. 

     The effect of the force on the Lagrangian markers which spreads into the Eulerian grid is 
expressed as 

 𝑓௜ሺ𝑥⃗, 𝑡ሻ ൌ ∑ 𝐹௜ሺ𝑥௞ሬሬሬሬ⃗ , 𝑡ሻ𝐷௛ሺ𝑥పሬሬሬ⃗ െ 𝑥௞పሬሬሬሬሬ⃗ ሻℎ′ଶ, (15) 

where ℎ′ is the characteristic length associated to the Lagrangian mesh size. 
     The estimated velocity field from the first step of the two-step fractional method (eqn (4)), 
is updated to take into account the body presence. It can be written as 

𝑢௜
∗ ൌ 𝑢௜

∗ ൅ Δ𝑡 
௙೔

ఘ
. (16) 

     During the process of interpolation to obtain the simulated velocity on the Lagrangian 
markers and extrapolation to spread the effect of the force on its surrounding Eulerian grids, 
the velocities on the Lagrangian markers may not be satisfied entirely. Therefore, the multi-
direct forcing technique, proposed by Wang et al. [6], is applied. This iterative technique is 
employed until the difference between the velocity simulated on the Lagrangian markers and 
the desired velocity approaches zero. The norm 𝐿ଶ is used as the criterion for the loop process 
at the time 𝑡 ൅ ∆𝑡. The total Lagrangian force 𝐹௜ ௟௔௚

௧ା∆௧, is the sum of all Lagrangian markers 
forces in all loops required to achieve the norm 𝐿ଶ criterion at the time 𝑡 ൅ ∆𝑡.  

3.2  Structural model of the spring tethered system 

With reference to Fig. 2, assuming that the springs are perfectly elastic having negligible 
mass and drag properties and neglecting the cylinder’s inertia, applying Newton’s second 
law and Hooke’s law, the following equations, for the resultant forces in each direction, result 
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where F୧ ୪ୟ୥ is the total Lagrangian force acting on the cylinder at the time t ൅ ∆t and F୫୧ 
represents the resultant springs force at the time t. Fଵ, Fଶ and Fଷ are calculated by the Hooke’s 
law at the time t. The cylinder center position at the time t is given by ሺx, yሻ ൌ ሺx୲, y୲ሻ and 
the geometrical domain center is given by ሺx, yሻ ൌ ሺxୡୣ୬, yୡୣ୬ሻ, thus, the angles values and 
the springs forces are calculated as follows 
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where the displacement by the springs, l୧
୲, is calculated by the cylinder center position at the 

time t and the springs equilibrium position which coincides with the geometrical domain 
center (illustrated in Section 4), calculated as follows 

𝑙ଵ
௧ ൌ ඥሺx୲ሻଶ ൅ ሺy୲ሻଶ െ ඥሺxୡୣ୬ሻଶ ൅ ሺyୡୣ୬ሻଶ, (27) 

𝑙ଶ
௧ ൌ ඥሺ2xୡୣ୬ െ x୲ሻଶ ൅ ሺy୲ሻଶ െ ඥሺxୡୣ୬ሻଶ ൅ ሺyୡୣ୬ሻଶ, (28) 

𝑙ଷ
௧ ൌ ඥሺx୲ െ xୡୣ୬ሻଶ ൅ ሺ2yୡୣ୬ െ y୲ሻଶ െ ඥሺyୡୣ୬ሻଶ. (29) 

     After calculating the total force acting on the cylinder, it is possible to determine the 
components of acceleration 

𝑥ሷ ௧ା∆௧ ൌ
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௠
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     These accelerations are integrated to estimate the velocities of the body 

u ୍୆୑ ൌ 𝑥ሶ ௧ା∆௧ ൌ 𝑥ሶ ௧ ൅ 𝑥ሷ ௧ା∆௧∆𝑡, (32) 

v ୍୆୑ ൌ 𝑦ሶ ௧ା∆௧ ൌ 𝑦ሶ ௧ ൅ 𝑦ሷ ௧ା∆௧∆𝑡. (33) 

Integrated again to determine the new cylinder center 

𝑥௧ା∆௧ ൌ 𝑥௧ ൅ 𝑥ሶ ௧ା∆௧∆𝑡, (34) 

𝑦௧ା∆௧ ൌ 𝑦௧ ൅ 𝑦ሶ ௧ା∆௧∆𝑡. (35) 

 The computational algorithm is described in the flow chart on the following pages. 

4  PROBLEM DESCRIPTION 
The problem consists of a square two-dimensional cavity of width 𝑙௫ and height 𝑙௬, with 𝑙௫ ൌ
𝑙௬ ൌ 𝐿 ൌ 1 m, where the upper wall moves from left to right with a given velocity U ൌ
1.0 m/s which drives the flow and 𝑈 ൌ 𝑉 ൌ 0 m/s on the remaining three sides. The 
cylinder with diameter 𝐷 ൌ 0.1 𝑚 is sustained by a set of three springs, as depicted in Fig. 
2. Initially the fluid is at rest and the cylinder is in the equilibrium position at the center of
the domain. The Reynolds number is defined based on the characteristic length, 𝐿 ൌ 1 m and 
the characteristic velocity U ൌ 1.0 m/s. The density of the fluid, 𝜌 ൌ 1 kg/mଷ and the 
kinematic viscosity is the variable responsible to change the Reynolds number 
ሺ𝜈 ൌ 𝑈 𝐿/𝑅𝑒ሻ. 

5  RESULTS 
The numerical platform was validated by the simulations of the classical lid-driven cavity 
flow without the presence of the immersed body. The spring system was then validated. The 
final step involved the fluid-structure interaction simulation. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

248  Boundary Elements and other Mesh Reduction Methods XLII



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     No 
                                                                        
 
             Yes  
                                                
    
 
 
 
 
 
 
 
 
 
     No 
       
 
 
                                               Yes 
 
 
 
 
 
 
 
 
 

𝑢௜
∗ ൌ 𝑢௜

௧ ൅ 𝑟ℎ𝑠௟ ∆𝑡
2 െ 𝑙

𝑙 ൌ 0,1 

𝑢௞ ௜
~ ൌ ෍ 𝑢௜

∗𝐷௛ሺ𝑥௞ ௜ െ 𝑥௜ሻℎଶ 

F୧ሺx୩ሬሬሬሬ⃗ , tሻ

ρ
ൌ

u୧ ୍୆୑ െ u୩ ୧
~

Δt
 

𝑓ሺ𝑥ሻ ൌ ෍ 𝐹௜ሺ𝑥௞ሬሬሬሬ⃗ , 𝑡ሻ𝐷௛ሺ𝑥௜ െ 𝑥௞௜ሻℎᇱଶ 

𝑢௜
∗ ൌ 𝑢௜

∗ ൅ Δ𝑡
𝑓௜

𝜌
 

𝐹௜ ௟௔௚
௧ା∆௧ ൌ ෍ 𝐹௜ሺ𝑥௞ሬሬሬሬ⃗ , 𝑡ሻ 

𝐿ଶ ൏ 10ି଺  

𝛿
𝛿𝑥௜

ቆ
𝛿𝑝ᇱ

𝛿𝑥௜
ቇ ൌ  

𝜌
∆𝑡

𝛿𝑢௜
∗

𝛿𝑥௜
 

𝑢௜
௧ା୼௧ ൌ  𝑢௜

∗௧ െ ∆𝑡
𝛿𝑝ᇱ

𝛿𝑥௜
 

𝑝௧ା୼௧ ൌ 𝑝ᇱ ൅ 𝑝௧ 

డ௨೔

డ
൏ 10ି଺

 B-2 

A-2 

Start 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLII  249



 
 
 
 
 
 
 
 
 
 
 
 
 
    
                                                                   

         Yes 
          
          

  
          

  
 

 
 
 

 

Figure 2:  Problem proposal scheme with the cylinder in an unbalanced position. 

     For the lid-driven cavity flow without the presence of the immersed body, the simulations 
were performed for Reynolds numbers of 100, 400 and 1,000. Uniform rectilinear meshes of 
129 x 129, 141 x 141 and 160 x 160 were used. Ghia et al. [17] reported the first benchmark 
results for the classical problem of the two-dimensional, incompressible lid-driven cavity 
flow. The results include the flow patterns, structures identification, minimum and 
maximums of several fields and velocity profiles passing through the geometric center of the 
cavity. This data was used to compare and validate the present numerical model.  
     The characteristics and topology of the Lid-driven cavity flow depend on the Reynolds 
number. For 𝑅𝑒 ൌ 100 the flow structure is characterized by a primary eddy centred slightly 
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to the upper right side of the cavity. In addition to this eddy, there are two smaller eddies at 
the bottom left and at the bottom right corners of the cavity. As the Reynolds number 
increases the secondary eddies grow in size and the primary eddy adapts to this change, 
shifting towards the center of the cavity. Fig. 3 shows the streamlines pattern for primary and 

secondary eddies associated with the velocity vector magnitude (ඥ𝑢² ൅ 𝑣²). As the Reynolds 
number increases the flow becomes more energized and the primary eddy is circumvented 
by this region. 
 

  
 

(a) (b) (c) 

Figure 3:    Streamlines pattern for primary and secondary eddies associated with the 
velocity vector magnitude for: (a) Re = 100; (b) Re = 400; and (c) Re = 1000. 

     In order to validate the spring system equations, the cylinder was initially placed in an 
arbitrary position, such as 𝑥/𝐿 ൌ 0.4 and 𝑦/𝐿 ൌ 0.6. The cylinder’s center position was then 
tracked against dimensionless time (𝑡 ∗ ൌ 𝑡/ሺ𝐿/𝑈ሻሻ as shown in Fig. 4. Since no damping is 
present, the cylinder continues to move indefinitely. 
 

 
(a) (b)

Figure 4:    History of the cylinder center position at k = 0.1 N/m. (a) With respect to time; 
and (b) With respect to space. 

     For the fluid-structure interaction, the square cavity was discretized using a mesh size of 
160x160 volumes. The simulations were run at Reynolds numbers of Re = 100, 400 and 
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1,000 and spring constants 𝑘 ൌ 0.01, 0.1 and 1.0 N/m. The cylinder diameter was fixed at D 
= 0.1m. With the fluid initially at rest and the cylinder in the equilibrium position (𝑥/𝐿 ൌ
𝑦/𝐿 ൌ 0.5), the simulations were run for 100s. 
     Results show that the transient cylinder center position depend on the values of k and Re. 
As shown in Fig. 5, there are two distinct results related to the 𝑘 value. When the spring 
constant is small, 𝑘 ൌ 0.01 N/m, the resultant springs force is much weaker than the fluid 
dynamics forces (Fig. 5(a)) and the springs stretch freely resulting in the cylinder motion 
mainly affected by the fluid dynamics action. On the other hand, when the spring constant is 
larger, a clear response from the springs forces interacting with the fluid dynamics is evident. 
 

  
(a) (b) (c) 

Figure 5:    The cylinder center position along the time for spring constant. (a) k = 0.01 N/m; 
(b) k = 0.1 N/m; and (c) k = 1 N/m. 

6  CONCLUSIONS 
In this paper, a simplified fluid-structure interaction model consisting of a cylinder tethered 
by a spring system interacting dynamically with the incompressible two-dimensional lid-
driven cavity flow using the immersed boundary (IB) method was investigated. A structured 
Cartesian grid was employed for the Eulerian domain while the boundaries were represented 
through Lagrangian markers. The advantage of this method is that bodies of almost any 
arbitrary shape can be added without grid restructuring, a procedure which is often time-
consuming. The numerical implementation of a Cartesian grid is simpler to implement than 
an alternative body-fitted coordinates grid. 
     Using the IB method, the motion of the cylinder does not impose grid restructuring at each 
time step when FSI is present. Additionally the partitioned approach used in this study shows 
an efficient way to couple the flow and structural solver. 
     From the cases studied, cases having large spring constants, strings forces induce the 
cylinder to an oscillatory motion damped by the fluid viscous forces, consequently the 
amplitude of the displacements decrease.  
     It can therefore be concluded that the immersed boundary method is a good tool to model 
fluid-structure interaction problems. Additionally this method can also accommodate 
complex geometry without the need of complex grid creation algorithms. 
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