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ABSTRACT
In this paper we present the development of a Fast Boundary-Domain Integral Method for the solution 
of fluid flow and heat transfer problems. Adaptive cross approximation of integral matrices is performed 
on a hierarchically decomposed matrix structure. We couple the developed flow simulation algorithm 
with stochastic modelling of input parameters. In order to assess the influence of input parameters on the 
simulation results, we employ the stochastic collocation method as a wrapper around the deterministic 
code. We apply the developed numerical tool for the simulation of flow and heat transfer of nanofluids. 
Keywords: Boundary-Domain  Integral  Method,  stochastic  collocation  method,  sensitivity  
analysis, nanofluid, natural convection.

1 INTRODUCTION
The Boundary-Domain Integral Method [1] has been successfully used to solve several 
kinds of engineering problems. Its main drawback is the large computational resources 
required due to the appearance of fully populated matrices during the discretization 
procedure. In this paper we present the development of a Fast Boundary-Domain Integral 
Method [2], [3] for the solution of fluid fl ow an d he at tr ansfer pr oblems, wi th th e aim 
to reduce computational requirements of the algorithm. The Navier–Stokes equations in 
velocity-vorticity formulation are considered. Diffusion and modified Helmholtz fundamental 
solutions are used to derive a Boundary-Domain Integral representation of the 
governing equations. We employ two discretization approaches. The vorticity transport 
equation is solved using a domain decomposition approach. This leads to a finite element 
type sparse structure of integral matrices and enables efficient use of computational 
resources. The kinematics equation, on the other hand, is solved on a single domain, 
which leads to full matrices of integrals. To mitigate the high computational resources 
required, we propose the use of a hierarchical decomposition of the domain, which leads to 
H-matrix representation of integral matrices. Admissible matrix blocks are approximated 
using the adaptive cross approximation technique. Efficiency of the proposed acceleration 
strategy is discussed and an optimal compression ratio is found to exist. We define the 
optimal approximation ratio as the highest compression ratio, where the error introduced by 
the approximation is of the same order as other errors of the numerical scheme.

The reduced computational demands of the algorithm enables us to couple the developed
flow simulation algorithm with stochastic modelling of input parameters. In order to assess
the influence of input parameters on the simulation results, we employ the stochastic
collocation method (SCM, [4], [5]) as a wrapper around the deterministic flow simulation
code. In this way, we are able to propagate the uncertainty from input to output parameters.
First, we identify the most important parameters using the “one-at-a-time” (OAT) principle
and then, the full tensor SCM was used to assess the stochastic mean, variance and Sobol-like
indices for sensitivity analysis [6].
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Finally, we apply the developed numerical tool for the simulation of flow and heat transfer
of nanofluids. A nanofluid is a term describing a dilute dispersion of particles in a fluid. The
diameter of particles is in the order of ten nanometres. The particles are made of metal oxides,
which enhances the thermal properties of the suspension. Natural convection in a cubical,
differentially heated cavity is considered as a model problem for stochastic analysis.

2 METHODS
The velocity vorticity formulation of Navier–Stokes equations as a model for nanofluid flow
and heat transfer was presented in Ravnik et al. [7]. In nondimensional setting, it reads:

∇2~v + ~∇× ~ω = 0, (1)

∂~ω

∂t
+ (~v · ~∇)~ω = (~ω · ~∇)~v + Pr

µnf
µf

ρf
ρnf
∇2~ω − PrRaβnf

βf
~∇× T~g, (2)

∂T

∂t
+ (~v · ~∇)T =

knf
kf

(ρcp)f
(ρcp)nf

∇2T, (3)

where Pr and Ra are the Prandtl and Rayleigh numbers respectively. The nanofluid is
modelled using effective properties, such as: density ρnf , viscosity µnf , heat capacitance
(cp)nf , thermal expansion coefficient βnf and thermal conductivity knf . Models for these
are listed in [8]–[9]. The solution of vorticity and energy transport eqns (2) and (3) used the
sub-domain Boundary Domain Integral Methods, as proposed by Ravnik et al. [10].

For the solution of the kinematics eqn (1) for unknown boundary vorticity values, we use
the following integral statement:

c(~ξ)~v(~ξ) +

∫
Γ

~v ~∇u? · ~ndΓ =

∫
Γ

~v × (~n× ~∇)u?dΓ +

∫
Ω

(~ω × ~∇u?)dΩ, (4)

where u?(~r) = 1

4π|~r−~ξ|
is the fundamental solution of the Laplace equation, Ω the domain,

Γ the boundary and ~ξ is the source point. Placing ~ξ into all boundary nodes and performing
discretization leads to a full system linear equations. We approximate the matrices using the
adaptive cross approximation (ACA) technique [11]. First, the matrices are subdivided using
a recursive algorithm, which gives a hierarchicalH matrix structure (Fig. 1) [12]. We defined
an optimal compression ratio, where maximum compression is achieved at a negligible effect
of simulation accuracy. Further details of the approach are given in [2], [3], [13].

In order to asses the influence of nanofluid parameters (density, viscosity, heat
capacitance, nanofluid concentration and thermal conductivity) on the simulation results, we
propose the use of a stochastic model, which consists of d input parameters modelled as
random variables (RV), organised in input vector: X = [x1, . . . xd]. The SCM is based on the
polynomial approximation of the considered output Y in the d dimensional stochastic space:

Ŷ (X) =
N∑
k=1

Lx(X) · Y (k), (5)

where Lk(X) is Lagrange basis function and Y (k) is the output realization for the kth input
point. The interpolation points (SC points) in each dimension are calculated according to
Gauss–Legendre quadrature rule. The interpolation in the multivariate dimension space is
done by using the tensor product of basis functions. The stochastic mean and variance are
calculated by following the formula from the statistics.
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Figure 1: An example of domain-boundary (left) and boundary-boundary (right) H matrix
structure. Red areas are inadmissible parts, where approximation is not performed,
[2].

Sensitivity analysis based on variance decomposition in which the variance of a model is
decomposed into terms depending on the input factors and their mutual interactions allows
the computation of sensitivity indices of first and high order [5]. In practice, only first order
indices are used:

Si =
VXi

[EX∼i
(Y |Xi)]

V (Y )
. (6)

To capture the contribution of all terms which include the variable Xi, a total effect index
is defined as follows:

STi = 1− VX∼i
[EXi

(Y |X∼i)]
V (Y )

. (7)

A more simple way is a “one-at-a-time” (OAT) approach in which one input parameter
is modelled as RV while the others are kept at nominal values. The impact of variables is
determined by comparing their respective variances.

3 RESULTS
As a model problem we consider the development of 3D natural convection in a differentially
heated cavity. Water with aluminium nanoparticles was the chosen nanofluid. We simulated
the problem at different nanoparticle concentrations and temperatures differences for a steady
state solution.

In the first step, 12 input parameters are modelled as random with uniform distribution
set as 10% variation from nominal value: volume fraction, temperature difference, fluid
viscosity, heat capacity, density, thermal conductivity, thermal expansion coefficient,
characteristic dimension, particle heat capacity, density, thermal conductivity, thermal
expansion coefficient. To reduce the dimensionality of a problem 12 univariate test cases
(TC) were done following the logic of OAT principle. Stochastic simulations with 3 and 5
SC points in each dimension were run leading to total of 73 deterministic simulations. The
convergence of the method was satisfactory. After comparing the variances from 12 TCs, five
input variables are recognized as the important ones, while the others will be neglected in
further computations. Those 5 input variables are: volume fraction, temperature difference,
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Rayleigh number
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Figure 2: Heat flux variation due to uncertainty in input parameters. Results for two
nanoparticle concentrations are shown.

Figure 3: Isosurfaces indicating the volume where the greatest variation in temperature field
occurs. Left panel: conduction dominated flow regime, Ra = 103, right panel:
convection dominated flow regime, Ra = 105.

fluid viscosity, heat capacity and, thermal conductivity. In the second step a full tensor model
with five random inputs and accuracy of 3SC was done.

In Fig. 2 we present the heat flux (expressed as Nusslet number) as a function of Rayleigh
number. We observe that the uncertainty in input parameters is expressed more prominently
in the convection dominated flow regime. Fig. 3 reveals areas in the flow domain where the
greatest variation in the temperature field occurs. They are located at the top and bottom
wall of the domain. In convection dominated flow regimes the areas of greatest variations are
found along the edges of the domain.

4 SUMMARY
We presented an  adapted  cross  approximation  accelerated Boundary-Domain  Integral  Method  
for the simulation of nanofluids using the solution of the velocity-vorticity formulation
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of Navier–Stokes equations. The developed algorithm was coupled with a stochastic input
parameter sensitivity analysis. We have successfully shown that acceleration of the boundary
domain integral method enables performing larger simulation sets, which are needed to
consider stochastic analyses.
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