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ABSTRACT 
The governing equations for plate bending problems are given by the partial differential equations of 
the 4th order. Therefore C1 continuous elements are required for approximation and discretization with 
using the standard finite element method (FEM). A novel discretization method is proposed and 
developed for numerical solution of plate bending boundary value problems. In contrast to the standard 
FEM, the analysed domain is not covered by a mesh of fixed non-overlapping finite elements, but only 
a net of nodes is used for discretization. Around each node, there is properly created a Lagrange finite 
element and the spatial variation of field variables is interpolated within this element in terms of nodal 
values and polynomial shape functions defined in the intrinsic coordinate space of the finite element. 
Thus, the Lagrange finite element associated with a node is moving within the analysed domain from 
node to node. Since there are no element interfaces known in standard FEM with a fixed finite element 
mesh, the difficulties with continuity of derivatives of field variables on such interfaces are avoided 
and higher order derivatives are available within the moving finite element. This makes the moving 
finite element (MFE) approximation to be applicable also to the development of the strong formulation 
of a boundary value problem with collocation of both the governing equations and boundary conditions 
at interior and boundary nodes, respectively. To decrease the order of the polynomial interpolation, the 
original set of the governing PDE is decomposed into a system of 2nd order PDEs by introducing a new 
field variable. Then, the boundary conditions are to be modified and the bi-quadratic Lagrange finite 
element is sufficient for approximation. Both the strong and the local weak formulations are derived 
and employed in the numerical test examples with focusing on verification of the reliability (accuracy 
and stability) and efficiency of the new method. 
Keywords:  Lagrange finite element, strong and weak formulation, convergence and accuracy, 
numerical stability, computational efficiency. 

1  INTRODUCTION 
The most frequently used methods in engineering computations, such as finite element 
method (FEM), finite volume method (FVM), boundary element method (BEM) are based 
on weak formulations of boundary value problems. Although, the strong formulations offer 
better computational efficiency because of elimination of integrations, the price which should 
be paid is the need to approximate higher order derivatives. The standard finite elements (FE) 
give only C0 continuity, while the recently developed mesh-free approximations utilize the 
higher order continuous shape functions, but these are not expressed in terms of elementary 
functions and hence, such mesh-free approximations result into time consuming evaluation 
of shape functions. Utilization of advantages of the polynomial interpolation (like in FEM) 
and the element-free discretization of the analysed domain (like in mesh-free methods) has 
been proposed originally in works [1]–[3] and recently elaborated in [4]–[6]. In this paper, 
the moving finite element (MFE) approximation [4] is developed and implemented for the 
solution of plate bending boundary value problems, with studying numerical aspects of the 
proposed method. 
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2  FORMULATION OF BOUNDARY VALUE PROBLEMS FOR  
THIN ELASTIC PLATES 

The bending of elastic plates can be described in a unique way [7] by including the 
assumptions of three plate bending theories, such as the Kirchhoff–Love theory (KLT), shear 
deformation plate bending theories of the 1st and 3rd order (FSDPT and TSDPT). 
Considering the thin elastic, homogeneous plates, the tensor of bending moments is 

expressed in terms of derivatives of dimensionless deflections ( ) ( ) / x xw w h  as  

 ( ) 2
,(1 )wM w w         ,    

2
( ) ( )( ) ( ), 
 x xw wL

M M
Dh

 (1) 

where h ,  , D , L  are the plate thickness, Poisson ratio, bending stiffness, a characteristic 
length in the mid-plane domain  , respectively, and the superscript * stands for notation of 
dimensionless quantities. The dimensionless in-plane Cartesian coordinates are defined as 

/ 
 x x L , and the superscript will be omitted in Cartesian coordinates in what follows, 

because we shall deal only with the dimensionless coordinates. The governing equation of 

the plate subjected to transversal loading 3 ( )xt is given by 

 ( )
3,

wM t 
   ,    

4

3 3
L

t t
Dh

  , (2) 

and can be rewritten as 

 2 2
3w t    . (3) 

     In order to decrease the order of the derivatives of deflection field, it is convenient to 

introduce the additional field variable m by eqn (4), when the 4th order PDE (3) is replaced 
by the system of two 2nd order PDE 

 2 0w m    ,    2
3m t   . (4) 

     The homogeneous boundary conditions can be written on the plate edge as 

(i) clamped edge (CE): 

 0w


 ,    / 0w


  n ; (5a) 

(ii) simply supported edge (SSE): 

 0w


 ,    ( ) 0;  




wn n M  (5b) 

(iii) free edge (FrE): 

 ( ) 0wn n M  



 ,    0V 


 , (5c) 

with 
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( )
( ) ( )

,( ) : ( ) ( ) ( ) ( ) ( )
w

w w c c

c

T
V n M T   


 

   


x x x x x x x
t

     

                              
( )

( )
,( ) ( ) ( ) ( ) ( )

w
w c c

c

T
n m T  


 

  


 x x x x x x
t

    , 

where 
2

( ) ( )w wL
T T

Dh
  , ( )( ) : wwT t n M    is the twisting moment, and the jump term is 

defined at corner points cx on the boundary edge   as 

( ) ( ) ( )( ) : ( 0) ( 0)w c w c w cT T T   x x x    . 

     Recall that at corner points the /w


 n is not defined uniquely because of the 

discontinuity of the normal vector. Therefore it is convenient to replace this boundary 

condition at 
cx by the local weak form of the governing eqn (41) 

  2 0
c

w m d 



       , 0
c cL

n w d m d 
 



     , (6) 

on the local subdomain around the point cx , where we have utilized that the boundary of the 

subdomain c is c c cL    and / 0cw


  n . 

     In view of (1) the boundary condition 

 ( ) 0,  



wn n M  (7) 

can be rewritten as 2
,(1 ) 0tw t w   


     . Furthermore, 

   , , , ,t
t tw w w

t w t w w n n t t w
 

           
  

         
      
       

   
      
   t t t t t t t n

with 
t

n






 t

being the curvature of the boundary edge. If 0w


 , then 

/ 0w


  t as well as   0/ /w



    t t and the boundary condition (7) on the SSE 

becomes 2 / 0w w



     n . Eventually, the boundary conditions on the SSE can 

be rewritten as 

 0w


 ,    / 0m w



     n . (8) 
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The advantage of this expression of the boundary conditions is the greater convenience for 
numerical treatment than the expression given by (5b) because of the lower order of the 
derivatives involved. The curvature is vanishing on straight edges as well as at corners, if the 
edges on both sides of the corner are straight lines. Then, the boundary condition (82) is 

simplified as 0m


  and both the boundary conditions on SSE are Dirichlet type. 

Nevertheless, a special treatment is required at corner points, in general. One possibility is to 

consider (82) in weak sense on the very short segments cs and cf of the length  . Then, 

/ 2 ( ) ( ) ( ) ( ) ( ) 0
cs cf

c cs cs cf cfw w
m w d m    

 
  

 

 
       

 

 
     

 
n x x x x x

n n
, 

and finally, the boundary conditions at a corner on the SSE can be rewritten as 

 0w


 ,    ( ) ( ) ( ) ( ) ( ) 0

1

2
c cs cs cf cfw w

m  
 

  
  

 

 
  
 

x x x x x
n n

. (9) 

     In the case of free-edge, it is necessary to rearrange the boundary condition 0V 


 . 

Owing to the Dirac-delta function as well as the discontinuity of the normal vector at a corner 
point, it is necessary to consider this boundary condition in weak sense around arbitrary point 

on the boundary edge, i.e. in weak sense on cs cf  and/or bs bf  considered around 
cx  and/or 

bx , respectively (see Fig. 1). For the sake of brevity, we shall use the superscript 
“b” for arbitrary point on the boundary edge. Then, the weak form of the considered boundary 
condition takes the form 

( )
( )

, ,( ) ( )
bs bf bs bf

w
w c c

c

T
n m T d n m d   


  

   


     



 
  

  
x x x

t
     

                                                                                                     ( ) ( )( ) ( )w bf w bsT T  x x . 

Since on short segments of the boundary edge, we can write 

, ( ) ( )
bs bf

bs bfm m
n m d  




 

 


 


 
  

 
x x

n n
, the b.c. 0V 


 becomes 

 ( ) ( )( ) ( ) ( ) ( ) 0w bf w bs bs bfm m
T T 


 

 
   

 

 
  
 

x x x x
n n

. (10) 

This expression of boundary condition still involves the 2nd order derivatives in twisting 
moment terms. 
     In numerical solutions of boundary value problems, the governing equations can be 

considered either in the strong sense at interior nodes a x  as 

 2 0( ) ( )a aw m   x x ,    2
3( ) ( )a a

m t
  x x , (11) 
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Figure 1:   Illustration of boundary contours c cs cf     and cL associated with a 

corner point cx or a boundary node bx  on a smooth portion of the boundary. 

or in the local weak sense on small subdomain a a  x  around interior nodes a x  as 

 , 0
a aL

n w d m d 
 



     ,    , 3 0
a aL

tn m d d 
 



     . (12)  

     It is seen that the 2nd order derivatives of primary field variables are required in the case 
strong formulation and the 1st order derivatives are sufficient in the weak formulation. On 
the other hand, these derivatives are needed only at nodal point in case of the strong 
formulation, while they are needed at certain integration points in case of weak formulation. 
Thus, the strong formulation requires higher order continuity of approximation than the weak 
formulation, while the computational efficiency is worse in the case of weak formulation. 

3  MOVING FINITE ELEMENT APPROXIMATION 
In contrast to the classical FEM, the analysed domain is not discretized into the mesh of finite 
elements, but only a mesh of nodes is utilized [4]. A finite element is associated with each 
node and this element is created automatically according to the position of the reference node 
on the bounded domain   [4]. In this paper, we shall consider the bi-quadratic 
Lagrange elements (with 9 nodes). Construction of the moving finite elements (FE) 

associated with particular nodes ax follows the rules [4]: (i) if a x , ax is the centre of the 

FE; (ii) if a x and  is smooth at the node ax , this node is the mid-side node of the FE; 

(iii) if ax lies at a corner on the boundary edge  , the FE is constructed uniquely. The 
approximation of the spatial variation of primary field variables, such as 

 ( ) ( ), ( )u w m x x x , is given by polynomial interpolation within the moving finite element 

 aE     as    
9

1
( ) ( )a

a
E

u u N 

 
 x ξ ,    ( )

a a
u u  x , (13) 

where ξ  is the shortcut for intrinsic coordinates  1 2,  , ( )N ξ  stand for standard 

interpolation shape functions in Lagrange finite element [9], and a  is the global number of 

the node on the element
aE with the local number {1,2,...,9}  . Utilization of bi-quadratic 

Lagrange FE for interpolation enables us to apply also the formulations involving the 2nd 
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order derivatives of field variables. Since the polynomial interpolation is in terms of intrinsic 
coordinates, the expression of derivatives is slightly complicated. Therefore we give them, 
but without details of derivation. The gradient of the field variable is given within the moving 
FE as 

 
9

,
1

( )
( ) ( )a

a

a a
i iE

i E

u
u u b

x
 

 


  



x
x ξ ,    

( )
( ) Ya a

i ik
k

N
b










ξ
ξ ,    Y ,



 a

a k
ik

i E
x

 (14) 

in which 1[ ] [ ]a aY J  and  

 
9

1a

aa i
ki i

k kE

x N
J x 



 

 
 
 

 ,    
3 3 a

lk
ik jla

ij a
JY

J

 
 ,    1 23

a a a
m nmnJ J J , (15) 

since we have used the isoparametric elements for field variables and Cartesian coordinates  

 
9

1

( )a
a

i iE
x x N 

 

  ξ . (16) 

     Similarly, for the 2nd order derivatives, we obtain 

2

,
1

( )
( ) ( )

a

a

n
a am

ij iE i j j mE

u
u u b

x x x
 






 
 
   x

x ξ  

 ,,
1 1

( ) ( ) ( )
n n

a aa aa a a a
jm ik is sl m ijkm lu Y Y N Y J b u b   

  

     ξ ξ ξ , (17) 

with 
2

, ,s
1

n
aa a

sl m mll
s m

N
J x J



  


 

  , 

,,( ) : ( ) ( ) ( )a a aa a a a
jm ik is sl mij jikm lb Y Y N Y J b b       ξ ξ ξ ξ . 

     The numerical implementation of the strong formulation can be obtained very easily by 
using the expressions for the derivatives at nodal points in both the governing equations and 
boundary conditions. In the case of weak formulation, some additional implementation is 
needed for the geometry of local subdomains and boundary contours, and it can be done as 
shown in [4]. There is no restriction on the shape of the local subdomain around a nodal 
point, but the subdomain should lie within the moving FE associated with the considered 
nodal point. For numerical integrations, the most appropriate shape of subdomain is the 
circular subdomain in the intrinsic coordinate space. 

4  NUMERICAL EXAMPLES 
In order to test the accuracy, numerical stability and compare the computational efficiency, 
we have considered simple examples for bending of a thin elastic homogeneous plate with 
clamped and/or simply supported edges and subjected to stationary uniform transversal 
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loading 3 1t  . The square plate L L  is considered with the thickness / 50h L  and 

constant Poisson ratio 0.3  . For the governing equations (g.e.), we have used two 
alternatives – the strong as well as weak formulations, while the Dirichlet boundary 
conditions are considered in strong sense and the Neumann boundary conditions either in 
strong or weak sense. The convergence study with increasing the number of uniformly 
distributed nodal points is shown in Figs 2 and 3. 
     Practically the same results have been obtained for all the formulation variants applied to 
plate with CE: (a) weak form of g.e. and Neumann b.c. at all boundary nodes, (b) weak form 
of g.e. and Neumann b.c. only at corners, (c) strong form of g.e. and weak form of Neumann 
b.c. at all nodes. Convergence is achieved for rather large amount of nodes ( 51 51 2601  ).  
     In case of the plate with SSE, the convergence is significantly faster (11 11 121  nodes) 
and it is practically the same in both the considered formulation variants: (a) weak form of 
g.e., (b) strong form of g.e. The boundary conditions in plates with SSE are Dirichlet type 
and considered only in the strong sense. 
     From comparison of Figs 2 and 3, it is seen that the vanishing slope (normal derivative of 
deflections) on the CE affects significantly also the values of deflections at nodes far from 
the boundary edge, if the approximation elements are extensively large.  
     Hence, the convergence is much slower than in case of the plate with SSE. Moreover, in 
case of SSE plate, the analytical solution is available in the form of infinite series [8], which 
converges fast. On the other hand, the closed form solution is not available for CE plate. 
Therefore, we can present comparison of numerically obtained distribution of deflections 
with analytical one only for the SSE plate (Fig. 4). 
 
 

 

Figure 2:  Convergence of numerical results for deflections in plate with CE. 
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Figure 3:  Convergence of numerical results for deflections in plate with SSE. 

 

Figure 4:    Comparison of numerically computed distribution of deflections with analytical 
one in SSE plate. 
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     The deviation of numerically computed maximal deflection 2
max 0.4062227 10w q   

from the exact value 2
max 0.4062353 10w q    is 0.0031% in case of the SSE plate, while 

in the CE plate the numerical value 2
max 0.1258785 10w q     deviates from the exact value

2
max 0.126 10w q    by 0.096%, provided that 5041 nodes were used in numerical 

computations. 
     Furthermore, for the SSE plate, we can evaluate also the average error as  

1

1 ( )
% error of deflections = 1 100%

( )

ann

a
a ex

w

nn w



   x

x
, 

and the convergence of the computational method can be measured via the dependence of 
the % error of deflections on the number of nodes (nn) (Fig. 5). The exact solution for the 
SSE plate [8] is given as 

3

1 2

1 2
6 4 22 21,3,... 1,3,...

1 2

sin sin
16

ex
m n

m x n x
t L L

w
L

m n
mn

L L

 



  

 
  

             

,    1 2L L L  . 

 

Figure 5:  Dependence of the % error of deflections on the number of nodes in SSE plate. 
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Figure 6:  Condition number of discretized equations vs. number of nodes. 
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Figure 7:    Relative CPU times vs. number of nodes for various techniques in CE and SSE 
plates. 
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     Another characteristic of computational methods is the numerical stability, which is 
determined by the sensitivity of accuracy of numerical solution of discretized equations, i.e. 
linear system of algebraic equations, with respect to a change of the right hand side evoked 
for instance by inaccuracy of specification of external influence. For this purpose, the 
condition number is usually used, defined as the maximum ratio of the relative error in 
solution to the relative error in the r.h.s. of the system of algebraic equations. The 
dependences of the condition number on the amount of nodes for CE as well as SSE plates 
are shown in Fig. 6. Significantly better conditioning of the system of discretized equations 
is achieved in the SSE plate than in the CE plate. 
     Finally, for comparison of the computational efficiency of approaches employed in this 
study, we have used the relative CPU defined as the ratio of the actual CPU measured in 
seconds and the normalization value. The normalization value is selected as the smallest 
value of the CPU which is 0.140625 (sec) in case of CE plate and 0.15625 (sec) in SSE plate 
with using 25 nodes. From Fig. 7, it can be seen that the numerical integrations involved in 
weak formulations result in higher values of the CPU than in strong formulations. These 
differences between the CPU times are decreasing with increasing the number of nodes, since 
the time needed for solution of the system of discretized equations is becoming dominant and 
the time needed for numerical integrations is becoming less significant in approaches 
incorporating weak formulations. 

5  CONCLUSIONS 
The Moving Finite Element approximation has been developed and implemented for the 
solution of bending boundary value problems considered within the classical Kirchhoff–Love 
theory. Both the strong and weak formulations for governing equations as well as proper 
formulations of boundary conditions have been derived and verified in numerical test 
examples with studying: (i) convergence; (ii) accuracy; (iii) numerical stability of solution of 
the system of discretized equations; and (iv) computational efficiency of various 
computational approaches. In numerical studies the dependence on increasing number of 
nodes is involved. 
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