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ABSTRACT 
Despite active research of many decades, numerical solution of the large-scale exterior wave problems 
remains a great challenge. The finite element method (FEM) needs to be coupled with some effective 
special treatments for handling unbounded domains, which are often tricky and largely based on  
trial–error experiences. The boundary element method (BEM) appears attractive to exterior problems, 
because the fundamental solutions satisfy the governing equation and Sommerfeld radiation condition 
at infinity. However, the BEM encounters computationally expensive singular numerical integration of 
fundamental solutions. To avoid this troublesome issue, the method of fundamental solutions (MFS) 
distributes the source nodes on a fictitious boundary outside the physical domain and is meshless, 
integration-free, and highly accurate. However, the placement of fictitious boundary is still an open 
issue for complex-shaped boundary and multiply connected domain problems. Recently, an alternative 
meshless boundary collocation approach, singular boundary method (SBM), has been proposed to solve 
various wave propagation problems. The key issue of the SBM is to determine the accurate source 
intensity factors instead of the singularities of fundamental solutions at origin. Several techniques have 
been proposed and investigated. The SBM is mathematically simple, easy-to-program, meshless, and 
applies the concept of source intensity factors to eliminating the singularity of the fundamental 
solutions. The method avoids singular numerical integrals in the BEM and circumvents the troublesome 
placement of the fictitious boundary in the MFS. This paper first presents the mathematical background 
of the SBM, and then applies it to wave propagation analysis. 
Keywords:  fundamental solutions, singular boundary method, boundary element method, wave 
propagation. 

1  INTRODUCTION 
Wave propagation has extensive and wide-range applications in engineering and sciences, 
especially in geological exploration, photovoltaic devices and metamaterials and ultrasonic 
non-destructive testing (NDT). The finite element method (FEM) and boundary element 
method (BEM) are two dominant numerical methods in the field of computational wave 
propagation. Since wave propagation analysis frequently refers to infinite domain problem, 
the domain-discretization FEM requires some additional efficient treatments to carefully 
truncate the infinite domain to finite domain, which are often tricky and largely based on 
trial–error experiences. It is natural to employ the BEM [1] in this kind of application without 
domain discretization since the semi-analytical fundamental solutions are used as basis 
functions, which satisfy the governing equation and the Sommerfeld radiation condition at 
infinity. Therefore, the BEM is an attractive alternative to the FEM especially for wave 
propagation under infinite domain. However, the BEM encounters sophisticated 
mathematical and computationally expensive numerical integration over the singularities. 
     To avoid this inconvenience in the BEM, the method of fundamental solutions (MFS) [2] 
places the source nodes on a fictitious boundary outside the physical domain, and implements 
a linear combination of fundamental solutions to approximate the numerical solution. In 
comparison with the BEM, the MFS provides more accurate solutions with the meshless and 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

doi:10.2495/BE420161

Boundary Elements and other Mesh Reduction Methods XLII  177



integration-free properties. However, the placement of source nodes on the fictitious 
boundary is vital for its numerical accuracy and stability, which is still an open issue 
especially for complex-shaped or multi-connected domains. 
     During the last two decades, great attentions have been paid to develop an accurate and 
stable semi-analytical boundary discretization scheme to eliminate the singularities of 
fundamental solutions in the BEM and also avoid the troublesome placement of fictitious 
boundary in the MFS. Generally speaking, there are two ways to achieve this goal. One is to 
derive nonsingular radial basis function general solutions instead of the singular fundamental 
solutions as basis function, for example, boundary knot method, boundary collocation 
method and modified collocation Trefftz method etc. The other one is to introduce the 
regularized technique to overcome the singularities of fundamental solutions, for example, 
regularized meshless method, modified method of fundamental solutions, singular boundary 
method (SBM) and boundary distributed source method etc. 
     This study focuses on the singular boundary method, which has been first proposed by 
Prof. Chen in 2009 [3]. Later, Fu and Chen [4] applied the SBM to wave propagation  
analysis. It inherits the merits from the BEM and the MFS and introduces the concept of  
the “origin intensity factors” or “source intensity factors” to eliminate the singularity in the 
fundamental solutions and instead of the numerical computation of the singular integrals in 
the BEM. There are several approaches [5]–[7] proposed to determine the origin intensity 
factors of both the fundamental solutions and their derivatives in the SBM application. The 
efficiency and accuracy of these approaches in the SBM have been verified for Laplace 
equations, Helmholtz equations, acoustic waves, elastic waves, and water waves with 
complicated-geometry domains. 
     This paper presents the fast singular boundary method for large-scale wave propagation 
application. The key issue is to overcome the ill-conditioning dense matrix generated from 
the SBM. So far, several fast dense matrix solvers have been employed, such as the Fast 
Fourier Transform (FFT) [7], the fast multipole methods (FMM) [8] dual-level scheme [9] 
and the multi-level scheme [10] etc.  
     A brief outline of the paper is as follows: in Section 2, a detailed description of the 
proposed fast SBM model is presented. Section 3 provides several numerical examples to 
demonstrate the effectiveness of the proposed method. Finally, in Section 4 some conclusions 
are drawn from the present analysis. 

2  FAST SINGULAR BOUNDARY METHOD FOR WAVE PROPAGATION 
Consider the time-harmonic wave propagating in a homogeneous medium D exterior to an 
object bounded with the closed curve G , which can be described by Helmholtz equation: 

 2 2( ) ( ) 0,         u x k u x x D    , (1) 

subjected to the boundary conditions 

 
       

D
u x u x  , (2) 

 

 
( )       N

u x
q x q x


  

n
, (3) 

where u is the complex-valued amplitude of the radiated and/or scattered waves (velocity 
potential or wave pressure): 
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in which the subscripts T, R, S, I denote the total, radiated, scattered and incident waves, 
respectively. /k c  is the wavenumber,   the angular frequency, c  the wave speed in 
homogeneous medium D, and n  the outward normal unit vector on the closed curve 

D N     , in which D  and N  represent the boundaries with the essential boundary 

(Dirichlet) conditions and the natural boundary (Neumann) conditions, respectively. For the 
exterior wave propagation problems, all scattered and radiated waves should be outgoing. 
This constraint condition is also known as the well-known Sommerfeld radiation condition: 

1
(dim 1)

2lim 0
r

u
r iku

r





    
, (4) 

where dim is the dimension of the acoustic problems, and 1i   . 

2.1  Singular boundary method 

Similar to the MFS, the SBM approximate solutions u(x) and q(x) of exterior wave 
propagation problem (eqns (1) and (2)) can be represented by a linear combination of the 
singular fundamental solutions or their partial derivation terms as follows: 
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where N is the number of source nodes sj, j  the jth unknown coefficient, xn  the outward 

normal unit vector on the collocation nodes xm, the fundamental solutions 
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,  1
nH  denotes the nth order Hankel function of the first 

kind, the Euclidean distance 
2mj m jr x s  . If the collocation nodes and source nodes 

coincide, i.e., xm=sj, the well-known singularities in the fundamental solutions are 
encountered. The concept of the origin intensity factors jj

SU  and jj
SQ  is introduced into the 

SBM for avoiding these singularities. Thanks to the same order of the singularities in  

,

,

,
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the Laplace and Helmholtz fundamental solutions [6], the origin intensity factors jj
SU  and jj

SQ  

can be represented by the following asymptotic expressions: 

 0 ,    0jj jj
S S mjU U B r   , (7) 

 0 ,    0jj jj
S S mjQ Q r  , (8) 

where 0
jj

SU  and 0
jj

SQ  are the origin intensity factors of the corresponding Laplace equation [6]
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and 0.57721566490153286    is the Euler 

constant. In this paper, the subtracting and adding-back technique is implemented to derive 
the formulation of the origin intensity factors 0

jj
SQ  as follows: 
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where the fundamental solutions of Laplace equation are given by 
   
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, sn  is the outward unit normal vector on the source nodes sj, Lj 

is half-length of the curve 1 1j js s   between the source nodes sj-1 and sj+1 for 2D problems or 

the infinitesimal area of the source nodes sj for 3D problems as shown in Fig. 1.  
 

(a) 
 

(b) 
 

Figure 1:   Schematic configuration. (a) Yhe source points sj and the curve 1 1j js s   for 2D 

problems; and (b) The source points sj and the corresponding infinitesimal area 

jL  for 3D problems. 

     For the determination of the origin intensity factors 0
jj

SU , the following empirical 

formulation is used in 2D problems [7]: 
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and the following formulation is used in 3D problems [11]: 
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where the associated general solution  u s and its partial derivation terms  q s  can be 

written as follows: 
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in which ( ), ( )md jdn x n s  denotes the Cartesian component of xn
 
and sn , respectively. 

     By adapting either eqn (5) or (6) at all the collocation nodes, the SBM formulation for 
exterior wave propagation problems (eqns (1) and (2)) can be discretized to the following 
linear system of equations: 

 Aα b , (14) 

where A

 

is the SBM resultant matrix, α  and b

 

denote the unknown coefficient vector and 
the known boundary condition vector, respectively. After determining the vector α , the 
complex-valued amplitude of velocity potential or wave pressure at any discretization nodes 
inside the domain or on the surface boundary can be evaluated via eqns (5) and (6). 

2.2  Fast Fourier Transform Singular boundary method 

For periodic obstacles, the Fast Fourier Transform can be used to accelerate the SBM matrix 
computation. Consider two typical periodic soft/rigid obstacles as shown in Fig. 2.  

 

 

(a) 
 

(b)

Figure 2:    Schematic configuration of two typical periodic structures. (a) Axisymmetric 
cylinder structure; (b) Four periodic arrays of scatterers.  
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     The surface of the kite-shaped obstacle in Figs 2(b) can be represented as 

 

     Taking a column of four kite-type scatterers as one obstacle, both the resultant matrices 
A constructed by the SBM for the typical periodic structures in Fig. 2 are block Toeplitz 
matrix T  with the form 
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where each iT  denotes an N N  matrix. The unique block number is 2 1M  , where M 

is the number of the scatterers in a row of the periodic structures. As we know, the block 
Toeplitz matrix can be embedded into a larger block circulant matrix C  

 

0 1 2 1

1 0 1 2

1

2 1

1 2 1 0

 

 





 
 
 
  
 
 
 
 

T T T T

T T T T

C T

T T

T T T T




   
  



. (16) 

According to the property of block circulant matrix, only the first block row 

 0 1 1 1 2 1M M M    R T T T T T T 
 
of C  needs to be computed and stored. 

Obviously, the computational storage can be reduced to 2(2 1) /M M  storage of the full 

SBM resultant matrix T . Eqn (14) can be rewritten as follows: 

 

11 12

21 22

                   

C C α b
C α b

C C 0 d
, (17) 

where 11 =C T  and 21= d C α . It should be mentioned that the linear system of equations (eqn 

(17)) cannot be solved directly due to the unknown vectors α  and d  appeared in both the 

left-hand and right-hand side vectors α  and b . Therefore, the following simple iterative 
algorithm is implemented to determine unknown vectors α  via eqn (17). 

i) Substitute the known elements of b  into kb , namely, replace kb  by b  and apply the 

FFT to compute the following block circulant matrix-vector multiplication: 
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ii) Substitute the known elements of α  into kα , namely, replace ke  by zero vector and 

apply the FFT to compute the following block circulant matrix-vector multiplication: 

 

1
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.kk
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iii) Stop the iteration process if the convergence is achieved with  

 

1
1

k k

k




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 

b b

e
, (20) 

where 1
 

denotes the convergence tolerance. Otherwise restart the loop. 

2.3  Fast multipole singular boundary method 

The fast multipole method (FMM) has been proposed by Greengard and Rokhlin. It consists 
of computing nearby solutions and far-fields solutions and can be employed to dramatically 
accelerate the solution procedure of the SBM system of equations (eqn (14)), in which matrix 
A is a dense and non-symmetric matrix. The main idea of the fast multipole SBM is to  
employ iterative solvers (such as GMRES) to solve the matrix system of equations and  
then employ the FMM to accelerate the matrix-vector multiplication in each iteration step, 
without forming the matrix A explicitly in general.  
     In the fast multipole SBM, one can rewrite fundamental solutions as follows: 

 
         1 2, = , ,m j i m i j

i

G x s G x z G s z . (21) 

Then the node-to-node computations in the conventional SBM are replaced by cell-to-cell 
interactions using a hierarchical tree structure of cells containing groups of nodes. This is 
possible by introducing the multipole and local expansions of the kernels and employing 
certain translations. The roadmap of the FMMSBM can be written as follows: 
     Step 1 Generate a hierarchical tree partitioning for computational domain;  
     Step 2 Upward pass. Accumulate multipole expansions for far field interactions through 
a backward visiting of the tree;  
     Step 3 Downward pass. Translate multipole moments to local expansions, and construct 
local expansions through a forward visiting of the tree;  
     Step 4 Evaluation of all the interactions. Evaluate far-field interactions to particles by local 
expansions, and evaluate directly near-field interactions. 
     The details of the FMMSBM formulation and implementation can be found in the 
literatures [8]. However, for large-scale wave propagation analysis, the FMMSBM still 
produces a very ill-conditioning resultant matrix, which slows down the convergence rate of 
matrix-iterative solvers even leads to incorrect results. 

2.4  Dual-level singular boundary method 

To further improve the computable ability of the FMMSBM, the dual level preconditioning 
technique is introduced to transform the fully populated resultant matrix to a local-supported 
sparse matrix on the fine level, which may overcome the highly ill-conditioning and 
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excessive storage requirement in the FMMSBM solution of large-scale wave propagation. 
The procedure of the DLFMMSBM (Fig. 3) includes the following steps: 

Step 1 (on the coarse level) Evaluation of initial approximate solution on the fine level; 
Step 2 (on the fine level) Evaluation of initial accurate solution on the fine level;  
Step 3 (on the fine level) Assessment of initial average relative error on the fine level;  
Step 4 (on the fine level) Evaluation of kth accurate residual potential on coarse level;  
Step 5 (on the coarse level) Evaluation of kth residual potential solution on the coarse 
level; 
Step 6 (on the fine level) Evaluation of (k+1)th accurate solution on fine level;  
Step 7 (on the fine level) Assessment of (k +1)th average relative error on the fine level.  

     The details of the DLFMMSBM formulation and implementation can be found in the 
literatures [9]. 
 

 

Figure 3:  Algorithm diagram of the DLFMMSBM. 

3  NUMERICAL RESULTS AND DISCUSSIONS 
In this section, the efficiency and accuracy of the FFTSBM are first tested on wave 
propagation by 3D cylinder structures and four periodic arrays of kite-shaped scatterers. 
Subsequently, the numerical comparison between DLFMMSBM and FMMSBM is given for 
wave radiation from a submarine model. The numerical accuracy is measured by the 
maximum error Merr(u) defined as  
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where  u i  and  u i  are the analytical and numerical solutions at xi, respectively, and NT is 

the total number of the test points in the interested domain. The test points  jy  are placed 

on a similar geometric surface to the scatterer with its center at the geometric center gc of the 
scatterer, and the off-distance parameter od is defines as 

 
0

,
j

j

gc
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gc






y
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(23) 

where  0
jy  are the points with a uniform angular distribution on the surface of the scatterer. 

Unless otherwise specified, NT=200, od=2, 4
1=10   and 4=10Tol   are used in all the 

following numerical examples on a personal computer with an Intel Core i7 Processor with 
16GB RAM.  
     Example 1: 3D wave radiation by a circular cylinder with soft or rigid boundaries. 
     First consider the wave propagation by a circular cylinder as shown in Fig. 2(a), where 
the pressure (u) and the normal velocity (q) on the cylinder surface are induced by a point 
source of the spherical dilatation wave with the unit intensity located at the geometric center. 
The analytical solution is presented by  

 3( , , )= gcikr

R gc gc gcu r x e r , (24) 

where ( , )gc gcr   denotes the polar coordinates with the geometric center gc as the origin of 

the plane 3 =0x . Fig. 4 plots the convergence rate of the FFTSBM with the CPU time versus 

boundary node number for 3D wave propagation problem with 3 16ka   and 3 16a h .  
 

 

Figure 4:   Convergence rate of the FFTSBM with the CPU time versus the boundary node 
number. 
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     It can be observed from Fig. 4 that the FFTSBM has a rapid convergence rate with the 
curve-slope 0.85, and it only requires about 3 minutes for periodic structure with 1 million 
boundary nodes. 
     Example 2: 2D wave scattering by 4×6 infinite kite-shaped impermeable cylinders. 
     Next consider the wave interaction with four periodic arrays of infinite kite-shaped 
impermeable scatterers as shown in Fig. 2(b), which can be simplified to 2D scattering 

problem of an incident plane wave  scattered by 4×6 rigid kite-shaped 

obstacles. Fig. 5 presents the wave pressure amplitude  around this four-periodic-array 

structure at the incidence wave angle  and the dimensionless wavenumber  

by using 50 boundary nodes on each kite-shaped obstacle surface. 
 

 

Figure 5:   Wave pressure amplitude u  for the 4×6 kite-shaped cylinder array at the 

incidence wave angle = 4   and the dimensionless wavenumber = 2ka   by 

using FFTSBM. 

Example 3: 3D wave radiation by a submarine model (Fig. 6) 
 

 

Figure 6:  A submarine model. 

 1 2cos sinik x xe  

u

= 4  = 2ka 
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     We consider the wave propagation by a submarine model with a size of 120m×12m×12m  
as shown in Fig. 6, where acoustic wave speed is set as 1500m/s. The analytical solution is 
given by 

 

2
1 2 3 3( , , )= 1ikr

R

i
u x x x x e r

kr
  
 

, (25) 

     The test points are uniformly distributed on the surface of sphere with radius 100m.  
Table 1 lists the numerical comparison between FMMSBM and DLFMMSBM in Example 3 
at two certain wave frequencies (f=87 and 217 Hz). It can be found from Table 1 that the 
FMM is introduced to allow the SBM to solve the large-scale wave propagation by 
complicated-geometry structure with more than 1 million boundary nodes. Moreover, the 
DLFMMSBM provides more accurate solutions with less CPU time and fewer boundary 
node requirement than those of the FMMSBM. 

Table 1:   Numerical comparison between FMMSBM and DLFMMSBM in Example 3 at 
two certain wave frequencies (f=87 and 217 Hz). 

 DLFMM+SBM FMM+SBM [8] 

kd (d=120m) 44.4 110.9 44.4 110.9 

f (Hz) 87 217 87 217 

Coarse-level nodes 5053 8019 / / 

Fine-level nodes 65,058 100,096 63,488 1,030,876 

Rerr (Tol=1e-4) 1.93E–4 5.04E– 4 1.13E-3 2.30E-2 

CPU time (s) 6.76E+1 2.09E+2 7.57E+2 9.24E+3 

4  CONCLUSIONS 
This paper presents the singular boundary method (SBM) in conjunction with the fast dense 
matrix solvers for large-scale wave propagation analysis. The Fast Fourier Transform (FFT) 
is introduced to the proposed SBM for solving periodic structure with 1 million boundary 
nodes about 3 minutes. The fast multipole method allows the SBM to solve the large-scale 
wave propagation by complicated-geometry structure with more than 1 million boundary 
nodes about 150 minutes. Furthermore, the dual-level preconditioning scheme enables the 
FMMSBM only to place 2–3 coarse-level nodes to obtain the acceptable numerical results. 
This node requirement almost approaches the minimum requirement specified by the 
Shannon’s sampling theorem. It is worth noting that the proposed DLFMMSBM for  
large-scale wave propagation analysis with complicated-geometry structure at high 
wavenumber is still under intense study. 
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