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ABSTRACT
This work presents a two-and-a-half dimensional (2.5D) spectral formulation based on the finite
element method (FEM) and the boundary element method (BEM) to study wave propagation in
acoustic and elastic waveguides. The analysis involved superposing two dimensional (2D) problems
with different longitudinal wavenumbers. A spectral finite element (SFEM) is proposed to represent
waveguides in solids with arbitrary cross-section. Moreover, the BEM is extended to its spectral
formulation (SBEM) to study unbounded fluid media and acoustic enclosures. Both approaches use
Lagrange polynomials as element shape functions at the Legendre–Gauss–Lobatto (LGL) points. The
fluid and solid subdomains are coupled by applying the appropriate boundary conditions at the limiting
interface. The proposed method is verified by means of a benchmark problem regarding the scattering
of waves by an elastic inclusion. The convergence and the computational effort are evaluated for
different h-p strategies. Numerical results show good agreement with the reference solution. Finally,
the proposed method is used to study the pressure field generated by an array of elastic fluid-filled
scatterers immersed in an acoustic medium.
Keywords: SBEM, SFEM, fluid–solid interaction, waveguide, scattered waves, two-and-a-half
dimension.

1 INTRODUCTION
Many engineering fields involve time harmonic wave propagation, such as fluid acoustics
and solid scattering. Hybrid methods based on the boundary element method (BEM) and
the finite element method (FEM) are suitable for studying solid and fluid interaction in
unbounded media. Both methods have been used in various works to predict the response
of coupled fluid-structure problems. For the low frequency range, the standard formulation
using linear elements accurately represents the fluid and solid scattering waves. However, at
high frequencies, the solution deteriorates due to so-called pollution effects [1], [2]. Higher
element approximations are needed to obtain accurate results.

Different approaches have been proposed in the past to overcome the pollution effect
in two and three dimensional problems [3]. The h-refinement method has proved to be
useless at high wavenumbers because of the necessary computational effort to represent small
wavelengths [4]. Many works suggest using high-order elements to improve the convergence
rate of standard formulations. The boundary and finite element methods have thus been
extended to their spectral formulations [5], [6] approximating the field variables by high-order
interpolation shape functions. Such functions are polynomials over non-uniformly spaced
nodes to avoid the Runge phenomenon.

In this work, we propose a two-and-a-half dimensional coupled spectral formulation
based on the FEM and the BEM to study wave propagation in fluid and solid waveguides.
The proposed method is useful for problems whose geometry and material properties are both
uniform in one direction, whereas the excitation exhibits a three dimensional distribution.
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Figure 1: Domain decomposition.

The spectral approach allows the analysis of wave propagation at high wavenumbers, which
reduces the pollution effect with low computational effort.

The outline of this work is as follows. First, the fluid-solid interaction problem is
formulated in two-and-a-half dimensions. The 2.5D formulation of the BEM and the FEM
are extended to their spectral formulations (SBEM and SFEM, respectively). The SBEM is
used for the representation of both acoustic enclosures and unbounded domains. Moreover,
a solid finite spectral element is proposed to represent elastic waveguides with arbitrary
cross-section. The proposed approach is verified with two benchmark problems: the wave
propagation in an unbounded acoustic region [7] and the scattering of waves by an elastic
inclusion [8]. An h-p convergence analysis is carried out to assess the accuracy of the method.
Finally, the proposed method is applied to study the scattered wave field in an unbounded
acoustic domain due to an array of elastic fluid-filled cylinders.

2 NUMERICAL MODELThe spectral formulations of the BEM and FEM are developed to represent an elastic
waveguide submerged in an unbounded acoustic region, as shown in Fig. 1. The proposed
methodology uses spectral solid elements to represent the elastic waveguide (Ωs), while
the fluid domain (Ωf ) is modelled with spectral boundary elements. Both methods are
coupled by imposing the appropriate boundary conditions at the interface Γ: equilibrium
of normal pressure and compatibility of normal displacement must be ensured at the fluid-
solid interface, with null shear stresses. The 2.5D formulation is handled by defining a
characteristic field for the elastic and the acoustic waveguides at point x = x (x,y ,z) as [9] ,
[10]:

f̂ (x, κz, ω) = f̃ (x̃, κz, ω) e−ικzz, (1)

where f̃ (x̃, κz, ω) is the frequency-wavenumber representation of an unknown variable
(e.g. displacement, force or sound pressure), x̃ = x̃ (x, y) and ι =

√
−1. The 3D solution

is computed as the superposition of 2D solutions with different wavenumber κz:

f (x, ω) =

∫ +∞

−∞
f̃ (x̃, κz, ω) e−ικzzdκz. (2)

2.1 Spectral boundary element method (SBEM)

Next, the SBEM is derived from the standard collocation method, which is fully covered
in the literature [11]. The main differences between the two methods concern the field
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2.1 Spectral boundary element method (SBEM)

Next, the SBEM is derived from the standard collocation method, which is fully covered
in the literature [11]. The main differences between the two methods concern the field
variable approximation and the proposed element integration scheme. In both cases, the
boundary integral representation is derived from the Helmholtz equation [11], considering a
homogeneous fluid domain denoted by its volume Ωf and boundary Γ. Although the proposed
method is used to obtain the three-dimensional radiated field by an elastic waveguide with
an arbitrary cross section, the problem is computed as the superposition of 2D problems with
different wavenumber κz . Therefore, the boundary Γ is reduced to its cross section Σ at the
coordinate plane z = 0. Thus, the integral representation of the fluid pressure for a point x̃i
located at the boundary Γ in the frequency-wavenumber domain is:

ci(x̃i)p̃i(x̃i, κz, ω)

= −
∫

Σ

(
ιρω2ũi(x̃i, κz, ω)Ψ̃(x̃, κz, ω; x̃i) + p̃i(x̃i, κz, ω)

∂Ψ̃(x̃, κz, ω; x̃i)
∂n

)
dΣ,

(3)

where p̃(x̃i, κz, ω) and ũ(x̃i, κz, ω) are the sound pressure and the particle normal
displacement at the cross section Σ of the boundary Γ, respectively. Ψ̃(x̃, κz, ω; x̃i) is the
solution to the Helmholtz equation at point x̃ due to a point source located at x̃i [12]. The
integral-free term ci(x̃i) only depends on the boundary geometry at the collocation point x̃i.

The boundary is discretised into N elements, with Σ =
⋃N
j=1 Σj , and the field variables

are approximated within the element using a set of interpolation shape functions φ(ξ). The
proposed methodology uses Lagrange polynomials of order p as interpolation shape functions
given by:

φk =
∏

j 6=i

ξ − ξi
ξj − ξi

, (4)

where nodal coordinates ξi are found at the Lobatto–Gauss–Legendre (LGL) points. The
use of a family of orthogonal polynomial (φi(ξj) = δij), such as Lagrange polynomials, as
interpolation shape functions, mitigates the appearance of the Runge phenomenon, which can
result in a highly ill-conditioned problem for high-order elements [13].

Once the sound pressure and particle normal displacement are approximated within the
element, the former integrals in eqn (3) become:

g̃ji (x̃, κz, ω; x̃i) =

∫

Σj

φΨ̃ (x̃, κz, ω; x̃i) dΣ, (5)

h̃ji (x̃, κz, ω; x̃i) =

∫

Σj

φ
∂Ψ̃ (x̃, κz, ω; x̃i)

∂n
dΣ. (6)

The spatial integrations in eqns (5) and (6) are numerically evaluated using a standard Gauss-
Legendre quadrature with (p+ 1) integration points whenever the collocation point does
not belong to the integration element. However, the integrals become singular when the
collocation point falls on the integration element. These integrals are numerically evaluated
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by element subdivision, isolating the collocation point at the integration endpoints

∫

Σj

f̃ (x̃, κz, ω; x̃i) dΣ =

∫ 1

−1

f̃ (x̃, κz, ω; x̃i) |Jj(ξ)|dξ

=

∫ ξp

−1

f̃ (x̃, κz, ω; x̃i) |Jj(ξ)|dξ +

∫ 1

ξp

f̃ (x̃, κz, ω; x̃i) |Jj(ξ)|dξ, (7)

with ξp being the natural coordinate of the collocation point x̃i, f̃ (x̃, κz, ω; x̃i) the kernel of
integrals in eqns (5) and (6), and |Jj(ξ)| the Jacobian of the transformation to the natural
coordinate system for element Σj . These integrals are numerically evaluated using a smooth
polynomial transformation as described in Reference [14]. Accurate results are given in the
next section for a number of integration points 10(p+ 1).

Finally, the boundary element matrices are assembled into a single system of equations
relating sound pressure and particle normal displacement at nodal points:

H̃ (x̃, κz, ω) p̃ (x̃, κz, ω) = G̃ (x̃, κz, ω) ũ (x̃, κz, ω) , (8)

where p̃ (x̃, κz, ω) and ũ (x̃, κz, ω) collect the nodal pressure and the normal displacement
to the boundary, and H̃ (x̃, κz, ω) and G̃ (x̃, κz, ω) are the fully populated non-symmetrical
boundary element system matrices.

2.2 Spectral finite element method (SFEM)

The spectral finite element formulation is based on the virtual work principle in the frequency-
wavenumber domain, which states [15]:

− ω2

∫

Ωs

δûT (x, κz, ω)ρsû(x, κz, ω)dΩ +

∫

Ωs

δε̂T (x, κz, ω)σ̂(x, κz, ω)dΩ

=

∫

Ωs

δûT (x, κz, ω)ρsb̂(x, κz, ω)dΩ +

∫

Γ

δûT (x, κz, ω)q̂(x, κz, ω)dΓ, (9)

where û(x, κz, ω) is the displacement vector, ε̂(x, κz, ω) and σ̂(x, κz, ω) are respectively
the strain and stress tensors, ρsb̂(x, κz, ω) is the body force in the domain Ωs, ρs is the
solid density, and q̂(x, κz, ω) is the nodal force vector. A variable preceded by δ denotes a
compatible variation of the displacement or the strain field.

The stress tensor is related to the strain tensor through the constitutive relation σ̂ = Cε̂,
where, in the case of a linear isotropic material, the constitutive matrix C depends on the
Young’s modulus E and the Poisson ratio ν.

The dependence of the strain tensor on the longitudinal coordinate z can be removed
considering the displacement definition in the frequency-wavenumber domain according to
eqn (1):

û (x, κz, ω) = ũ (x̃, κz, ω) e−ικzz. (10)

Then, the strain tensor can be derived from the displacement vector û as:

ε̂ = L1û + L2
∂û
∂z

= L1û− ικzL2û, (11)

where the differential operators are:
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L1 =




∂
∂x 0 0
0 ∂

∂y 0

0 0 0
∂
∂y

∂
∂x 0

0 0 ∂
∂y

0 0 ∂
∂x



, L2 =




0 0 0
0 0 0
0 0 1
0 0 0
0 1 0
1 0 0



. (12)

The 2.5D formulation is derived assuming that solid material properties and geometry are
both homogeneous in the longitudinal direction. Therefore, eqn (9) is further elaborated
by eliminating the dependency on the coordinate z rewriting the volume integrals over the
section As of the domain integration Ωs by the coordinate plane z = 0:

− ω2

∫

As

δũT ρsũdA+

∫

As

δε̃T σ̃dA =

∫

As

δũT ρsb̃dA+

∫

Σ

δũT q̃dΣ, (13)

where Σ is defined as the boundary Γ at z = 0.
The solid subdomain is discretised into elements, where the approximated displacement

vector ũ is defined as:
ũ = ϕũe, (14)

where ϕ are the two-dimensional shape functions obtained from the one-dimensional
function φ(ξ) as:

ϕk(ξ, η) = φi(ξ)φj(η) , k = (i− 1)(p+ 1) + j. (15)

The proposed spectral finite element is defined from local nodal coordinates (ξ, η) ∈
([−1, 1]× [−1, 1]) at the LGL points.

Once the element approximation is defined, the strain tensor is expressed in terms of the
nodal displacement as:

ε̃e = L1ϕũe − ικzL2ϕũe = B1ũe − ικzB2ũe, (16)

where B1 = L1ϕ and B2 = L2ϕ.
Introducing eqns (14) and (16) into eqn (13) and operating, the virtual work principle can

be rewritten for each element as:

− ω2

∫

Ae
s

δũeTϕT ρsϕũedA+

∫

Ae
s

δũeTBT1 CB1ũedA

− ικz
∫

Ae
s

δũeT
(
BT1 CB2 + BT2 CB1

)
ũedA− κ2

z

∫

Ae
s

δũeTBT2 CB2ũedA

=

∫

Ae
s

δũeTϕT ρsb̃
e
dA+

∫

Σe

δũeTϕT q̃edΣ, (17)

where Aes is the cross-sectional area of the three dimensional element in the z direction and
Σe its boundary. The following expression is obtained taking into account that eqn (17) must
be satisfied for any compatible displacement δũe:

[
−ω2Me + Ke

0 − ικzKe
1 − κ2

zKe
2

]
ũe = f̃

e
, (18)
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where Me is the element mass matrix, Ke
0, Ke

1 and Ke
2 are the stiffness element matrices and

f̂
e

is a vector that collects the forces applied to the element. These matrices are defined by:

Me =

∫

Ae
s

ϕT ρsϕdA, (19)

Ke
0 =

∫

Ae
s

BT1 CB1dA, (20)

Ke
1 =

∫

Ae
s

(
BT1 CB2 − BT2 CB1

)
dA, (21)

Ke
2 =

∫

Ae
s

BT2 CB2dA, (22)

and the external load vector f̃
e

as:

f̃
e

(x̃, κz, ω) =

∫

Ae
s

ϕT ρsb̃
e
(x̃, κz, ω)dA+

∫

Σe

ϕT q̃e(x̃, κz, ω)dΣ, (23)

which contains the contributions of both body forces and surface loads.
Then, eqn (18) can be written as:

K̃ũ = f̃, (24)

where K̃ = [−ω2M + K0 − ικzK1 − κ2
zK2] is the dynamic stiffness matrix obtained in the

frequency-wavenumber domain from the assembled mass M matrix, and stiffness K0, K1 and
K2 matrices.

The mass Me matrix and stiffness Ke
0, Ke

1 and Ke
2 matrices are numerically integrated

using a LGL quadrature of order p. Therefore, the nodal element coordinates coincide with the
element integration points producing a diagonal mass Me matrix and stiffness Ke

2 matrices.

2.3 SBEM-SFEM coupling

Eqns (8) and (24) are coupled by imposing equilibrium of forces, compatibility of normal
displacement and null shear stresses at the interface Γ. These equations are assembled into a
single comprehensive system, together with the equilibrium and compatibility conditions.

The load vector f̃f at the fluid–solid interface is obtained by integrating the fluid pressure
field p̃f over the boundary Γ:

f̃f = −
∫

Γ

ϕTnφp̃fdΓ = −RT p̃f , (25)

where n is the outward normal vector along Γ, and R is the coupling fluid–solid matrix which
relates force at the solid subdomain and pressure at the boundary. Substituting eqn (25) into
eqn (24) yields: [

K̃ss K̃sf

K̃fs K̃ff

] [
ũs
ũf

]
=

[
f̃s

−RT p̃f

]
, (26)

where subscript f indicates degrees of freedom belonging to Γ and s stands for the rest of
solid degrees of freedom.

Finally, the coupling of eqns (8) and (26) is carried out with the imposition of
compatibility of normal displacement at the boundary Γ, and null shear-stresses. Both
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Figure 2: Elastic inclusion in an unbounded acoustic region.

systems of equations are assembled into an overall system:




K̃ss K̃sf 0
K̃fs K̃ff RT

0 −G̃NT H̃






ũs
ũf
p̃f


 =




f̃s
f̃f
0


 , (27)

where N is a matrix containing the outward normal vector n at the boundary. Eqn (27) is
solved for each frequency-wavenumber step to compute the coupled fluid-solid response.

3 MODEL VERIFICATION
The proposed coupled spectral boundary and finite element method was verified on a
benchmark problem involving a cylindrical elastic waveguide in a homogeneous unbounded
fluid medium. The inclusion had a radius r = 0.6 m. The solid properties were compression
wave propagation velocity cp = 2630 m/s, shear wave propagation velocity cs = 1416 m/s,
and density ρs = 2250 kg/m3, while the fluid properties were sound wave propagation
velocity cf = 1500 m/s and density ρf = 1000 kg/m3. The proposed SFEM represented
the solid inclusion, while the SBEM was used to model the fluid domain.

The elastic inclusion was subjected to a dilatational point source located in the fluid at
distance x̃0 = (−3.5, 0) from the cavity centre (Fig. 2).

The problem solution was computed for a fluid wavenumber κf = 5.236 rad/m over
a grid of receivers using a density of six points per wavelength. A constant value of κz =
1.0 rad/m was assumed for comparison purposes. The analytical solution to this problem can
be found in Reference [8]. The numerical results were compared with the reference solution
and the scaled L2-error ε2 was used to asses the accuracy of the proposed method.

Three discretisations were investigated. The characteristic element sizes were 1/h =
{2.12, 4.24, 8.48}m−1, resulting in κfh = {2.47,1.23,0.62}. The element order p was set
to obtain nodal densities per wavelength dλ = {10,15,20}, which was limited to dλ = 20 for
the finest discretisation because of the element size.

Table 1 summarizes the computed scaled L2-error ε2 and the CPU time for the different
h-p discretisations used in this problem. The computed results presented a good agreement
with the reference solution, as the error varied from ε2 ≈ 1× 10−3 to ε2 ≈ 1× 10−5. The
smallest error was found for the medium size discretisation with an acceptable computational
time, while the finest mesh had a higher error in a similar time. On the other hand, the coarsest
mesh needed a higher computational effort to reach an acceptable error because of the higher
element order approximation. Therefore, a hp-refinement is more efficient in terms of error
and computational effort than a single h-refinement or p-refinement.

Figure 2: Elastic inclusion in an unbounded acoustic region.
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where N is a matrix containing the outward normal vector n at the boundary. Eqn (27) is
solved for each frequency-wavenumber step to compute the coupled fluid–solid response.

3 MODEL VERIFICATION
The proposed coupled spectral boundary and finite element method was verified on a
benchmark problem involving a cylindrical elastic waveguide in a homogeneous unbounded
fluid medium. The inclusion had a radius r = 0.6 m. The solid properties were compression
wave propagation velocity cp = 2630 m/s, shear wave propagation velocity cs = 1416 m/s,
and density ρs = 2250 kg/m3, while the fluid properties were sound wave propagation
velocity cf = 1500 m/s and density ρf = 1000 kg/m3. The proposed SFEM represented
the solid inclusion, while the SBEM was used to model the fluid domain.

The elastic inclusion was subjected to a dilatational point source located in the fluid at
distance x̃0 = (−3.5, 0) from the cavity centre (Fig. 2).

The problem solution was computed for a fluid wavenumber κf = 5.236 rad/m over
a grid of receivers using a density of six points per wavelength. A constant value of κz =
1.0 rad/m was assumed for comparison purposes. The analytical solution to this problem can
be found in Reference [8]. The numerical results were compared with the reference solution
and the scaled L2-error ε2 was used to asses the accuracy of the proposed method.

Three discretisations were investigated. The characteristic element sizes were 1/h =
{2.12, 4.24, 8.48}m−1, resulting in κfh = {2.47,1.23,0.62}. The element order p was set
to obtain nodal densities per wavelength dλ = {10,15,20}, which was limited to dλ = 20 for
the finest discretisation because of the element size.

Table 1 summarizes the computed scaled L2-error ε2 and the CPU time for the different
h-p discretisations used in this problem. The computed results presented a good agreement
with the reference solution, as the error varied from ε2 ≈ 1× 10−3 to ε2 ≈ 1× 10−5. The
smallest error was found for the medium size discretisation with an acceptable computational
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Table 1: Summary of scaled L2-error ε2 of the total fluid pressure, horizontal and
longitudinal solid displacement and CPU time, computed for the different hp
discretisations.

1/h[m−1] p dλ εp2 εux
2 εuz

2 CPU time [s]
2 5 2.14× 10−1 2.24× 10−1 5.76× 10−2 0.526
3 7.5 1.22× 10−2 1.58× 10−2 8.07× 10−3 1.051

2.12 4 10 1.78× 10−3 2.08× 10−3 1.08× 10−3 1.713
6 15 5.71× 10−4 4.90× 10−4 1.03× 10−3 4.379
8 20 5.01× 10−4 3.99× 10−4 1.00× 10−4 11.36
2 10 3.93× 10−3 5.50× 10−3 3.92× 10−3 0.899

4.24 3 15 1.29× 10−4 3.08× 10−4 2.37× 10−4 2.018
4 20 6.0× 10−5 2.75× 10−5 7.55× 10−5 3.976

8.48 2 20 1.67× 10−4 4.20× 10−4 3.24× 10−4 2.449

time, while the finest mesh had a higher error in a similar time. On the other hand, the coarsest
mesh needed a higher computational effort to reach an acceptable error because of the higher
element order approximation. Therefore, a hp-refinement is more efficient in terms of error
and computational effort than a single h-refinement or p-refinement.

4 NUMERICAL EXAMPLE
Finally, the capabilities of the proposed method are explored with a numerical example.
The problem solved herein was a study of the wave field scattered by an array of elastic
cylinders submerged in an inviscid fluid medium (Fig. 3). The elastic cylinders had an
external radius r = 0.4 m and a thickness t = 0.05 m. The centres of the scatterers were
equally spaced s = 1.2 m. The material was assumed to be PVC, with compression wave
propagation velocity cp = 2143 m/s, shear wave propagation velocity cs = 875 m/s, and
density ρ = 1400 kg/m3. The outer fluid was water, with sound wave propagation velocity
cf = 1500 m/s and density ρf = 1000 kg/m3. Three configurations were considered based
on the interior of the scatterers: i) water-filled; ii) air-filled, with sound propagation velocity
340 m/s and density 1.225 kg/m3; and iii) state of vacuum.

The array of scatterers was subjected to a dilatational point source located in the fluid at
position x̃0 = (−4.0, 0) (Fig. 3). The incident wave field p̃I was defined as in the previous
section. The problem response of the fluid-structure system was studied for a frequency
f = 6400 Hz.

The scatterers were modelled with spectral finite elements while outer and inner fluid
subdomains were represented with the SBEM. The discretisation was chosen to enable a
nodal density per wavelength of dλ = 12 in the outer fluid, while the scatterers and the inner
fluid meshes were defined to match the outer fluid mesh. The outer fluid was modelled with
34 elements, so the cylinders and the inner fluid were modelled again with 34 elements. The
element order was set to p = 4 in all cases. This discretisation resulted in a nodal density
dλ = 12 with and κfh = 2.

The 3D solution was computed as the superposition of 2D problems with different
longitudinal wavenumbers by means of eqn (2). The 3D solution can be computed in a
set of regularly spaced points along the longitudinal direction where ∆z = 2π/max {κz}.
The maximum wavenumber max {κz} = 160 rad/m was chosen to compute the solution
enabling six points in a longitudinal wavelength, ∆z = 2π/max {κz} = 0.0393 m. The
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Figure 3: Configuration of scatterers.

maximum pressure was found at the source point and the scatterer configurations produced
a shadowed zone, with a lower pressure amplitude. The vibration of the internal surface of
the cylinders caused a scattered wave field inside them in the fluid-filled cases. When the
cylinders were filled with water (Fig. 4(a)), the scattered pressure field shows a distribution
in accordance with the incident field, similar wavelength, amplitude, phase and direction,
as the fluid properties were the same. The fluid-filled case (Fig. 4(b)) exhibited a much more
complex pattern, with lower amplitude and wavelength and any concordance with the incident
field in direction or phase due to the difference in the properties of inner and outer fluids.
The vacuum and air-filled systems presented the best attenuation, as the water-filled system
allowed the waves to propagate through the scatterers.

Fig. 5 shows the 3D representation of the sound pressure at the surface of the scatterers
and the total pressure field in the fluid domain for the water-filled example. The scattered
pressure field at a vertical plane z = 6.0672 m inside the cylinders is also shown. Only half
of the model is represented for clarity’s sake, because of problem symmetry. The pressure
field had a spherical distribution centred at the source, which was progressively decreasing as
the distance to the source increased. Fig. 6 shows the deformed shape of the solid scatterers
external surface and displays the normal displacement to the boundary in the colour scale. The
displacement field also had a spherical distribution centered at the source, which decreased
as the distance from the source increased. Maximum amplitudes of both the pressure and
displacement were found at the plane z = 0, where the source was located and the incident
field was higher.

This example has shown that the proposed method can be used to study the wave
propagation in a fluid-filled elastic waveguides immersed in an unbounded acoustic medium.
The proposed method was able to represent different fluid properties for the unbounded fluid
and the acoustic enclosures.

Figure 3: Configuration of scatterers.

wavenumber sampling ∆κz = 0.5178 rad/m made it possible to compute the solution for
a maximum distance L = π/∆κz = 6.0672 m from the source.

First, the behaviour of a cross section is analysed. Fig. 4 shows the total pressure field in
the outer fluid and the scattered pressure field inside the cylinders at a vertical plane z = 0
for the three studied cases. The total pressure fields are quite similar in the three cases. The
maximum pressure was found at the source point and the scatterer configurations produced
a shadowed zone, with a lower pressure amplitude. The vibration of the internal surface of
the cylinders caused a scattered wave field inside them in the fluid-filled cases. When the
cylinders were filled with water (Fig. 4(a)), the scattered pressure field shows a distribution
in accordance with the incident field, similar wavelength, amplitude, phase and direction,
as the fluid properties were the same. The fluid-filled case (Fig. 4(b)) exhibited a much more
complex pattern, with lower amplitude and wavelength and any concordance with the incident
field in direction or phase due to the difference in the properties of inner and outer fluids.
The vacuum and air-filled systems presented the best attenuation, as the water-filled system
allowed the waves to propagate through the scatterers.

Fig. 5 shows the 3D representation of the sound pressure at the surface of the scatterers
and the total pressure field in the fluid domain for the water-filled example. The scattered
pressure field at a vertical plane z = 6.0672 m inside the cylinders is also shown. Only half
of the model is represented for clarity’s sake, because of problem symmetry. The pressure
field had a spherical distribution centred at the source, which was progressively decreasing as
the distance to the source increased. Fig. 6 shows the deformed shape of the solid scatterers
external surface and displays the normal displacement to the boundary in the colour scale. The
displacement field also had a spherical distribution centered at the source, which decreased
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Figure 4: Real part of the pressure field at cross-section of the scatterers system at the vertical
plane z = 0 for the (a) water-filled cylinders, (b) air-filled cylinders and (c) vacuum
cylinders. Sound pressure in water medium was normalised to 0.15 Pa, and to
5× 10−5 Pa in air medium.

as the distance from the source increased. Maximum amplitudes of both the pressure and
displacement were found at the plane z = 0, where the source was located and the incident
field was higher.

This example has shown that the proposed method can be used to study the wave
propagation in a fluid-filled elastic waveguides immersed in an unbounded acoustic medium.
The proposed method was able to represent different fluid properties for the unbounded fluid
and the acoustic enclosures.

5 CONCLUSIONS
This work has proposed a spectral element formulation based on the BEM and the FEM to
study fluid and solid wave propagation. The presented methodology looks at 3D problems
whose materials and geometric properties remain homogeneous in one direction. Solid
subdomains were modelled with the SFEM, whereas the unbounded fluid media and acoustic
enclosures were represented by the SBEM. The coupling of both methods was carried out by
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Figure 5: Real part of the pressure field (normalised to 0.15 Pa) in an unbounded fluid by a
system of water-filled elastic scatterers.

Figure 6: Real part of normal displacement at external surface (normalised to 1.2×
10−12 m) in a system of water-filled elastic scatterers, represented over the
deformed shape.

imposing the appropriate boundary conditions at the interface to study fluid-structure wave
propagation.

The model was verified with a benchmark problem having an analytical solution.
The coupled SBEM-SFEM was verified with a problem concerning a cylindrical elastic
waveguide in an unbounded fluid medium. Numerical results show good agreement with
the analytical solution. An h-p analysis shows that an optimal solution in terms of accuracy
and computational effort can be obtained through an hp-refinement. Discretisations with a
nodal density per wavelength of ten are enough to achieve reasonable accuracy. The accuracy
improves by increasing the nodal density per wavelength up to twenty.
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Finally, the coupled methodology was used to study the wave field radiated by a
three dimensional fluid-filled elastic scatterers system submerged in an unbounded acoustic
medium. The sound pressure field and the scatterers’ surface displacements were studied. The
proposed method made it possible to represent different fluids for the unbounded medium and
the acoustic enclosures.
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