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ABSTRACT

This work presents a two-and-a-half dimensional (2.5D) spectral formulation based on the finite
element method (FEM) and the boundary element method (BEM) to study wave propagation in
acoustic and elastic waveguides. The analysis involved superposing two dimensional (2D) problems
with different longitudinal wavenumbers. A spectral finite element (SFEM) is proposed to represent
waveguides in solids with arbitrary cross-section. Moreover, the BEM is extended to its spectral
formulation (SBEM) to study unbounded fluid media and acoustic enclosures. Both approaches use
Lagrange polynomials as element shape functions at the Legendre—Gauss—Lobatto (LGL) points. The
fluid and solid subdomains are coupled by applying the appropriate boundary conditions at the limiting
interface. The proposed method is verified by means of a benchmark problem regarding the scattering
of waves by an elastic inclusion. The convergence and the computational effort are evaluated for
different h-p strategies. Numerical results show good agreement with the reference solution. Finally,
the proposed method is used to study the pressure field generated by an array of elastic fluid-filled
scatterers immersed in an acoustic medium.

Keywords: SBEM, SFEM, fluid—solid interaction, waveguide, scattered waves, two-and-a-half
dimension.

1 INTRODUCTION

Many engineering fields involve time harmonic wave propagation, such as fluid acoustics
and solid scattering. Hybrid methods based on the boundary element method (BEM) and
the finite element method (FEM) are suitable for studying solid and fluid interaction in
unbounded media. Both methods have been used in various works to predict the response
of coupled fluid-structure problems. For the low frequency range, the standard formulation
using linear elements accurately represents the fluid and solid scattering waves. However, at
high frequencies, the solution deteriorates due to so-called pollution effects [1], [2]. Higher
element approximations are needed to obtain accurate results.

Different approaches have been proposed in the past to overcome the pollution effect
in two and three dimensional problems [3]. The h-refinement method has proved to be
useless at high wavenumbers because of the necessary computational effort to represent small
wavelengths [4]. Many works suggest using high-order elements to improve the convergence
rate of standard formulations. The boundary and finite element methods have thus been
extended to their spectral formulations [5], [6] approximating the field variables by high-order
interpolation shape functions. Such functions are polynomials over non-uniformly spaced
nodes to avoid the Runge phenomenon.

In this work, we propose a two-and-a-half dimensional coupled spectral formulation
based on the FEM and the BEM to study wave propagation in fluid and solid waveguides.
The proposed method is useful for problems whose geometry and material properties are both
uniform in one direction, whereas the excitation exhibits a three dimensional distribution.
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Figuie 1: Domain decomposition.
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2.1 Spectral boundary element method (SBEM)

Next, the SBEM is derived from the standard collocation method, which is fully covered
in the literature [11]. The main differences between the two methods concern the field
variable approximation and the proposed element integration scheme. In both cases, the
boundary integral representation is derived from the Helmholtz equation [11], considering a
homogeneous fluid domain denoted by its volume €2 and boundary I'. Although the proposed
method is used to obtain the three-dimensional radiated field by an elastic waveguide with
an arbitrary cross section, the problem is computed as the superposition of 2D problems with
different wavenumber k.. Therefore, the boundary I is reduced to its cross section X at the
coordinate plane z = 0. Thus, the integral representation of the fluid pressure for a point X;
located at the boundary I in the frequency-wavenumber domain is:

¢ (X)pi(Xi, K2y w)

- o o OV (X, k2, w; Xy
_ _/ (przui(xhﬁz,w)\y(x,mz,w;xi)+pz'(xz',/fz,w)0‘(’;;““) dy,
b))

3

where p(X;,k.,w) and u(X;,k,,w) are the sound pressure and the particle normal
displacement at the cross section Y of the boundary T, respectively. U (X, k., w;X;) is the
solution to the Helmholtz equation at point X due to a point source located at X; [12]. The
integral-free term ¢;(X;) only depends on the boundary geometry at the collocation point X;.

The boundary is discretised into NV elements, with ¥ = U;V:1 39, and the field variables
are approximated within the element using a set of interpolation shape functions ¢ (). The
proposed methodology uses Lagrange polynomials of order p as interpolation shape functions
given by:

§—¢&
o =1] : @
i S

where nodal coordinates &; are found at the Lobatto—Gauss—Legendre (LGL) points. The
use of a family of orthogonal polynomial (¢*(£;) = d;;), such as Lagrange polynomials, as
interpolation shape functions, mitigates the appearance of the Runge phenomenon, which can
result in a highly ill-conditioned problem for high-order elements [13].

Once the sound pressure and particle normal displacement are approximated within the
element, the former integrals in eqn (3) become:

7 &K hewiX) = [ o (R ks, wiX;) d, )
I

79 o~ ~ \AI; X z .Ni

hi (X, 2y wi %) = p QL B fzy i Xi) (X, ) i) g (6)
»i a'I’L

The spatial integrations in eqns (5) and (6) are numerically evaluated using a standard Gauss-
Legendre quadrature with (p + 1) integration points whenever the collocation point does
not belong to the integration element. However, the integrals become singular when the
collocation point falls on the integration element. These integrals are numerically evaluated
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by element subdivision, isolating the collocation point at the integration endpoints

1
f(§,527w;§i)d§]:/ TR by i %) |9 (6)]dE
p3¥ —1
519 1

= 1f(iynz,w;ii>|ﬂ<f>|df+ ) F &k wi %) |9 (€)|de, %)

with &, being the natural coordinate of the collocation point X;, f (X, ., w;X;) the kernel of
integrals in eqns (5) and (6), and |J7(£)| the Jacobian of the transformation to the natural
coordinate system for element /. These integrals are numerically evaluated using a smooth
polynomial transformation as described in Reference [14]. Accurate results are given in the
next section for a number of integration points 10(p + 1).

Finally, the boundary element matrices are assembled into a single system of equations
relating sound pressure and particle normal displacement at nodal points:

ﬁ(’i,nz,w)ﬁ(i,nz,w) =G (X, k2 w) U (X, kyyw), 8)

where p (Z, k.,w) and u (X, K., w) collect the nodal pressure and the normal displacement

to the boundary, and H (X, k., w) and G (X, k,w) are the fully populated non-symmetrical
boundary element system matrices.

2.2 Spectral finite element method (SFEM)

The spectral finite element formulation is based on the virtual work principle in the frequency-
wavenumber domain, which states [15]:

—w? [ suT(x, ks, w)psU(X, Ky w)dQ + 6T (X, Ky )G (X, Kz, w)dS

Qs Qs

:/ 6ﬁT(x, Hz,w)pSB(X, /@Z,w)dQ—l—/éﬁT(x, Ky w)q(X, Ky, w)dl, 9)
Q. r

where U(x, 5., w) is the displacement vector, (X, r,,w) and & (x, k,,w) are respectively
the strain and stress tensors, psﬂ(x, K»,w) is the body force in the domain ), ps is the
solid density, and q(x, ., w) is the nodal force vector. A variable preceded by § denotes a
compatible variation of the displacement or the strain field.

The stress tensor is related to the strain tensor through the constitutive relation & = CE,
where, in the case of a linear isotropic material, the constitutive matrix C depends on the
Young’s modulus E and the Poisson ratio v.

The dependence of the strain tensor on the longitudinal coordinate z can be removed
considering the displacement definition in the frequency-wavenumber domain according to
eqn (1):

u (X, ky,w) =1 (X, ky,w) e =2 (10)

Then, the strain tensor can be derived from the displacement vector U as:

~ — ou ~ —
€:L1u+L287u = Liu — tk,Lou, (11
z

where the differential operators are:
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The 2.5D formulation is derived assuming that solid material properties and geometry are
both homogeneous in the longitudinal direction. Therefore, eqn (9) is further elaborated
by eliminating the dependency on the coordinate z rewriting the volume integrals over the
section A, of the domain integration {2, by the coordinate plane z = 0:

2 / 5 poiidA + / 5T FdA = / 557 pabdA + / salads,  (13)
A, As As Py

where 3 is defined as the boundary I' at z = 0.
The solid subdomain is discretised into elements, where the approximated displacement
vector u is defined as:
U= pu’, (14)

where ¢ are the two-dimensional shape functions obtained from the one-dimensional
function ¢(§) as:

e =0 (), k=3G-1)p+1)+] (15)

The proposed spectral finite element is defined from local nodal coordinates (£,7) €
([-1,1] x [-1,1]) at the LGL points.

Once the element approximation is defined, the strain tensor is expressed in terms of the
nodal displacement as:

¢ = Lipu® — 1k, Lou® = B1u® — 1k,Bou’, (16)

where B; = L1 and By = L.
Introducing eqns (14) and (16) into eqn (13) and operating, the virtual work principle can
be rewritten for each element as:

—w? [ T pypudA+ | su"BTCBu“dA
Ag Ag

— i, [ ou" (BTCBy +BYCB,)u“dA — k2 [ 6u"BICByu“dA
Ae A

= [ suTpTpbdA+ | suTeTqcdy, (17)
Ase e

where A¢ is the cross-sectional area of the three dimensional element in the z direction and
3¢ its boundary. The following expression is obtained taking into account that eqn (17) must
be satisfied for any compatible displacement 6u°:

[—w?M° + K§ — s K{ — k2K5] 0° =1, (18)
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where M° is the element mass matrix, K§, K and K are the stiffness element matrices and
—~e
f is a vector that collects the forces applied to the element. These matrices are defined by:

M = /A ¢ pspdA, (19)
KS/AfoCBldA, (20)
K¢ = /A (B CB, — BJ CB,) dA, (1)
KS = /A S Bl CB,dA, (22)

~C
and the external load vector f as:

f&uew = [ Tob Grwids [ TRrwis 0
Ae e
which contains the contributions of both body forces and surface loads.
Then, eqn (18) can be written as:

Ku =f, (24)

where K = [~w?M + K — 1k, Ky — k2Ky] is the dynamic stiffness matrix obtained in the
frequency-wavenumber domain from the assembled mass M matrix, and stiffness K, K; and
K> matrices.

The mass M® matrix and stiffness K§, K{ and K§ matrices are numerically integrated
using a LGL quadrature of order p. Therefore, the nodal element coordinates coincide with the
element integration points producing a diagonal mass M® matrix and stiffness K§ matrices.

2.3 SBEM-SFEM coupling

Eqns (8) and (24) are coupled by imposing equilibrium of forces, compatibility of normal
displacement and null shear stresses at the interface I'. These equations are assembled into a
single comprehensive system, together with the equilibrium and compatibility conditions.

The load vector ff at the fluid—solid interface is obtained by integrating the fluid pressure
field p; over the boundary I':

fr=— / e nepprdl = —R7py, (25)
r

where n is the outward normal vector along I', and R is the coupling fluid—solid matrix which
relates force at the solid subdomain and pressure at the boundary. Substituting eqn (25) into
eqn (24) yields:

£ B8] &)
Krs Kyl LW —Rpy

where subscript f indicates degrees of freedom belonging to I" and s stands for the rest of
solid degrees of freedom.

Finally, the coupling of eqns (8) and (26) is carried out with the imposition of
compatibility of normal displacement at the boundary I', and null shear-stresses. Both
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Figute 2: Elastic inclusion in an unbounded acoustic tegion.
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Table 1: Summary of scaled Ls-error es of the total fluid pressure, horizontal and
longitudinal solid displacement and CPU time, computed for the different hp

discretisations.
1/hm™ p dy b €n” €n* CPU time [s]
2 5 214x1071T 224 x 1071 5.76 x 1072 0.526
3 75 1.22x1072 1.58x 1072 8.07x 1073 1.051
2.12 4 10 1.78x1073 2.08x 1073 1.08x 1073 1.713
6 15 571x107* 490x10~* 1.03x 1073 4379
8 20 501x107* 3.99x10~* 1.00x10~* 11.36
2 10 393x1073 550x10~° 3.92x 1073 0.899
4.24 3 15 1.29x107* 3.08x107* 237x10°* 2.018
4 20 60x10° 275x107° 7.55x107° 3.976
8.48 2 20 1.67x107% 420x107% 324 x 107 ¢ 2.449

time, while the finest mesh had a higher error in a similar time. On the other hand, the coarsest
mesh needed a higher computational effort to reach an acceptable error because of the higher
element order approximation. Therefore, a hp-refinement is more efficient in terms of error
and computational effort than a single h-refinement or p-refinement.

4 NUMERICAL EXAMPLE
Finally, the capabilities of the proposed method are explored with a numerical example.
The problem solved herein was a study of the wave field scattered by an array of elastic
cylinders submerged in an inviscid fluid medium (Fig. 3). The elastic cylinders had an
external radius » = 0.4 m and a thickness ¢ = 0.05 m. The centres of the scatterers were
equally spaced s = 1.2 m. The material was assumed to be PVC, with compression wave
propagation velocity ¢, = 2143 m/s, shear wave propagation velocity ¢; = 875 m/s, and
density p = 1400 kg/m?3. The outer fluid was water, with sound wave propagation velocity
¢y = 1500 m/s and density py = 1000 kg/m?>. Three configurations were considered based
on the interior of the scatterers: ¢) water-filled; ¢¢) air-filled, with sound propagation velocity
340 m/s and density 1.225 kg/m?; and iii) state of vacuum.

The array of scatterers was subjected to a dilatational point source located in the fluid at
position Xg = (—4.0,0) (Fig. 3). The incident wave field p’ was defined as in the previous
section. The problem response of the fluid-structure system was studied for a frequency
f = 6400 Hz.

The scatterers were modelled with spectral finite elements while outer and inner fluid
subdomains were represented with the SBEM. The discretisation was chosen to enable a
nodal density per wavelength of d) = 12 in the outer fluid, while the scatterers and the inner
fluid meshes were defined to match the outer fluid mesh. The outer fluid was modelled with
34 elements, so the cylinders and the inner fluid were modelled again with 34 elements. The
element order was set to p = 4 in all cases. This discretisation resulted in a nodal density
dy =12 withand kph = 2.

The 3D solution was computed as the superposition of 2D problems with different
longitudinal wavenumbers by means of eqn (2). The 3D solution can be computed in a
set of regularly spaced points along the longitudinal direction where Az = 27 /max {x, }.
The maximum wavenumber max {x.} = 160 rad/m was chosen to compute the solution
enabling six points in a longitudinal wavelength, Az = 27/max {k,} = 0.0393 m. The
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Figure 4: Real part of the pressure field at cross-section of the scatterers system at the vertical
plane z = 0 for the (a) water-filled cylinders, (b) air-filled cylinders and (c) vacuum
cylinders. Sound pressure in water medium was normalised to 0.15 Pa, and to
5 x 1075 Pa in air medium.

as the distance from the source increased. Maximum amplitudes of both the pressure and
displacement were found at the plane z = 0, where the source was located and the incident
field was higher.

This example has shown that the proposed method can be used to study the wave
propagation in a fluid-filled elastic waveguides immersed in an unbounded acoustic medium.
The proposed method was able to represent different fluid properties for the unbounded fluid
and the acoustic enclosures.

5 CONCLUSIONS
This work has proposed a spectral element formulation based on the BEM and the FEM to
study fluid and solid wave propagation. The presented methodology looks at 3D problems
whose materials and geometric properties remain homogeneous in one direction. Solid
subdomains were modelled with the SFEM, whereas the unbounded fluid media and acoustic
enclosures were represented by the SBEM. The coupling of both methods was carried out by
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y[m]

Figure 5: Real part of the pressure field (normalised to 0.15 Pa) in an unbounded fluid by a
system of water-filled elastic scatterers.

Figure 6: Real part of normal displacement at external surface (normalised to 1.2 x
10?2 m) in a system of water-filled elastic scatterers, represented over the
deformed shape.

imposing the appropriate boundary conditions at the interface to study fluid-structure wave
propagation.

The model was verified with a benchmark problem having an analytical solution.
The coupled SBEM-SFEM was verified with a problem concerning a cylindrical elastic
waveguide in an unbounded fluid medium. Numerical results show good agreement with
the analytical solution. An h-p analysis shows that an optimal solution in terms of accuracy
and computational effort can be obtained through an hp-refinement. Discretisations with a
nodal density per wavelength of ten are enough to achieve reasonable accuracy. The accuracy
improves by increasing the nodal density per wavelength up to twenty.
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Finally, the coupled methodology was used to study the wave field radiated by a
three dimensional fluid-filled elastic scatterers system submerged in an unbounded acoustic
medium. The sound pressure field and the scatterers’ surface displacements were studied. The
proposed method made it possible to represent different fluids for the unbounded medium and
the acoustic enclosures.
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