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ABSTRACT 
In this paper, the element differential method (EDM), a new numerical method proposed recently, is 
coupled with the boundary element method (BEM), a traditional numerical method, for solving general 
multi-scale heat conduction problems. The basic algebraic equations in BEM are formulated in terms 
of temperatures and heat fluxes, which are the same as those in EDM. So, when coupling these two 
methods, we do not need to transform the variables like the thermal loads into heat fluxes as done with 
the finite element method (FEM). The key task in the proposed coupled method is to use the temperature 
consistency condition and the flux equilibrium equation at interface nodes of the two methods to 
eliminate all BEM nodes except for those on the interfaces. The detailed elimination process is 
presented in this paper, which can result in the final system of equations without iteration. The 
coefficient matrix of the final coupled system is sparse, even though a small part is dense. The coupled 
method inherits the advantage of EDM in flexibility and computational efficiency and the advantage of 
BEM in the robustness of treating multi-scale problems. A numerical example is given to demonstrate 
the correctness of this coupled method. 
Keywords:  coupled analysis, boundary element method, element differential method, multi-scale 
problems. 

1  INTRODUCTION 
In mathematics, to solve the type of second-order partial differential equations (PDEs) like 
heat conduction problems, there are a number of numerical methods available. The frequently 
used methods are finite element method (FEM) [1]–[7], boundary element method (BEM) 
[8]–[15] and some of mesh free methods (MFM) [16]–[21]. FEM is the most widely used 
method due to its flexibility and applicability and most engineering problems can be solved 
by it. BEM only needs to discretize the boundary of the problem into elements, which not 
only can reduce the dimension, but also can easily simulate some special cases like crack and 
stress concentration [8], [12]. However, the final system of BEM has a dense coefficient 
matrix and the fundamental solutions are derived from the linear problems, which severely 
limits the application of BEM in large problems, nonlinear and nonhomogeneous problems 
[12], [15]. Different from mesh-dependent methods, MFM only needs a group of distributed 
nodes in the computational domain and barely needs elements. Therefore, MFM can easily 
simulate the problems with irregular geometries. However, MFM has the drawbacks of time 
consuming to form the global shape functions and difficulty to apply boundary conditions 
[16], [17]. 
     For multi-scale problems, they have at least a large-scale part and a small-scale part in the 
computational domain. For example, considering a big block with side length of 50 mm and 
0.5 mm coatings around the surface, its large-scale part is block and its small-scale parts are 
coatings. 
     When we analyse heat conduction using FEM, both the block and its coating should be 
discretized into elements. To avoid the ill-formed elements in the coating, the size of each 
element should be close to the thickness of the coating, which may result in too many 
elements in modelling the block mentioned above. That is, the thinner the coating, the greater 
the number of elements. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

doi:10.2495/BE420091

Boundary Elements and other Mesh Reduction Methods XLII  101



 

 

     If we use BEM to solve this type of problem, the scale of different dimensions has less 
influence on the scale of elements, since we only need to discretize the boundary of the 
computational domain. However, if the block itself is too big, the total number of nodes will 
be so many so that the system with dense coefficient matrix to be solved will be very large. 
Both forming and solving the system are time consuming. 
     A better way to solve multi-scale problems is using BEM to analyse the coating, and FEM 
to analyse the block. Then the two systems are coupled together by temperature consistency 
and flux equilibrium on the interface. However, the basic algebraic equations in BEM are 
formulated in terms of temperatures and heat fluxes, while those in FEM are formulated in 
terms of temperatures and thermal loads. So, when coupling these two methods, we should 
transform the thermal loads into the heat fluxes, which need interpolation and integration 
[22]. 
     Recently, a new numerical method called element differential method (EDM) is proposed 
by Gao et al. [23]–[25] and Cui et al. [26]. It is also a flexible method like FEM and can be 
used in most engineering problems. Crucially, EDM algebraic equations are formulated in 
terms of temperatures and heat fluxes, the same as with BEM. Therefore, it is easier to couple 
EDM and BEM together. 
     In this paper, the theory of EDM and BEM will be introduced briefly, while the coupling 
process of two methods is mainly illustrated. Finally, an example is given to verify the 
correctness of this coupled algorithm. 

2  GOVERNING EQUATIONS FOR HEAT CONDUCTION PROBLEMS 
The main research theme of this paper is multi-scale heat conduction and mechanical 
problems. Therefore, the governing equations of two problems are considered in the paper. 

2.1  Steady heat conduction problems 

For transient heat conduction problems, discretization in the time domain is exactly the same 
as with FEM and will not be considered here. 
     For steady heat conduction problems with a spatially varying thermal conductivity and 
heat source, the governing equation can be expressed as 

 ( )
( ) ( ) 0ij
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and three types of boundary conditions are shown as follows: 
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in which, Ω is the computation domain of problem, Γ is the boundary of Ω, 1 2 3= + +    , 
x represents coordinate vector, n is the outward normal to the boundary Γ, h is the heat transfer 

coefficient; 
q

  and T   are the prescribed heat flux and temperature on the boundary, 
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respectively; T∞ is the prescribed environment temperature; λ is the thermal conductivity 
tensor, T is the temperature, and Q is the heat-generation rate. The repeated subscripts i and 
j represent the summation over their range which is 2 for 2D and 3 for 3D problems. 

3  ELEMENT DIFFERENTIAL METHOD 
The main idea of EDM is to transform the physical variables and their first- and second-order 
partial derivatives in PDE into shape functions and their same order derivatives. Usually, we 
use the shape function of an isoparametric element [1], [2] because of its advantage in 
geometry representation and physical variable interpolation. In this section, it is shown 
briefly how to represents the physical variable derivatives by using shape function derivatives 
and assemble the final system. 

3.1  Computational process from physical variable derivatives to shape function derivatives 

For the spatial coordinates and physical variables within the element, we can express them 
by shape function as: 

 i ix N x
 , (5) 

 T N T 
 , (6) 

where ix 

 and T 

 denote the coordinates and temperatures at the  node over an element, 

respectively; N  is the shape function at the node ; the repeated index  represents the 
summation over all nodes in the element; the subscript i has values 1, 2 and 3 which represent 
x-, y- and z-directions for 3D problem. 
     The partial derivatives of physical variables shown in the governing equations can also be 
expressed by shape function: 
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in which iN x  , the shape function derivative with respect to global coordinates, can be 
transformed into them with respect to intrinsic coordinates: 
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where /i jx    is the Jacobian matrix mapping from the global coordinate system ix  to the 

intrinsic coordinate system j  , with 
   1 2, ,x x x y

  and 1 2 ( , )   （ , ）   for 2D 

problems, and 1 2 3( , , ) ( , , )x x x x y z  and 1 2 3 ( , , )     （ , , ） for 3D problems. It should 

be noticed that 
 -1

/i jx  
means inversed Jacobian matrix. According to eqn (5), all items 

in Jacobian matrix can be easily computed using the following expression: 

 [ ] = i
ij i

j j

x N
J x

 
 


 

. (9) 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLII  103



 

 

     The equations above shows the computational process of the first-order derivatives. 
Second-order derivatives can be obtained by the same way as shown in the following 
equations: 
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3.2  Assembling the system of equations based on governing equations and boundary 
conditions 

When solving the heat conduction or mechanical problem by means of the EDM, the 
computational domain Ω needs to be discretized into a series of elements that contain some 
nodes like FEM. The system of equations is established using a collocation scheme at each 
node. That is, one node matches only one equation and the nodes with different positions in 
the element have different equations. According to their positions, 3 types of nodes are 
defined as internal, interface and outer surface nodes. For example, in Fig. 1, there are four 
9-node elements in the computational domain. The internal nodes refer to as the nodes located 
completely within elements like nodes number 7, 9, 17 and 19 in Fig. 1, and the interface 
nodes refer to as the nodes shared by a number of elements like nodes number 8, 12, 13, 14 
and 18 in Fig. 1, whereas the outer surface nodes refer to as the nodes located on the outer 
boundary of the problem like the rest of the nodes not mentioned above in Fig. 1. 
 

 

Figure 1:  9-node elements computational domain. 

     For the internal nodes, eqn (1) should be satisfied. Thus, by substituting eqns (7) and (10) 
into eqn (1), we can obtain the internal node equation for heat conduction problems: 

 
2( ) ( ) ( )
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. (12) 

     For the interface nodes, the traction equilibrium condition should be satisfied, i.e., 
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where M is the number of element surface which the interface node is located on. Similarly, 
substituting eqns (7) and (10) into eqns (13), we can obtain the interface node equation for 
heat conduction problems (see eqn (14)) 
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     For the outer surface nodes, the right-hand sides of eqn (13) are not 0, but 
q

  or it  . 
Therefore, the equation for this kind of nodes become 
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     Using the above equations, we can list a set of equations involving nodal temperatures 
and heat fluxes. Multiplying the specified values of temperatures and heat fluxes with their 
corresponding coefficients, a known vector b can be formed, which is usually moved to the 
right-hand side of the system of equations. The other terms associated with unknowns are set 
on the left-hand side of the system of equations. Then, the final system equation can be 
written as: 

     ,A x b  (16) 

where x is a vector containing unknowns of each node; A is a sparse coefficient matrix. 
     By solving eqn (16) for vector x, we can obtain all unknowns of the problem. That is all 
the solution process of heat conduction using EDM. 

4  BOUNDARY ELEMENT METHOD 
The BEM is a widely known numerical method. So, the BEM theory is introduced briefly in 
this section. 
     For heat conduction problems, the boundary integral equation can be expressed as [8]: 

 ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), 

 
    c P T P q Q P T Q d Q T Q P q Q d Q  (17) 

where c=1/2 for smooth boundary points and c=1 for interior points; P and Q represent the 
source points and field points, respectively; T and q are the temperature and heat flux defined 
on the boundary Γ; T* and q* are the fundamental solutions for heat conduction problems, 
which are Green function and its derivative [27], [28]. 
     For a BEM computational domain, we can just discretize its boundary into elements. 
Therefore, a 2D problem needs 1D line elements and a 3D problem needs 2D surface 
elements. Each node in the elements have their own boundary integral equation. Getting those 
equations together and moving the temperatures to left-hand side of the system and the heat 
fluxes to the right-hand side, we can obtain: 

 ,HT Gq  (18) 

where H is the coefficient matrix of temperatures, and G is the coefficient matrix of heat 
fluxes. To solve the systems, the unknowns are moved to left-hand side of system and the 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLII  105



 

 

known values to the right-hand side as with EDM. Then the final system is obtained, whose 
format is like that of eqn (16). 

5  COUPLING EDM AND BEM 
When solving a multi-scale problem, the large-scale part of the computational domain would 
be better to be solved by EDM since it is flexible and efficient, while the small-scale part 
would be better to be solved by BEM because the latter method is robust in treating small 
scale problems. Then, we can couple these two methods using displacement/temperature 
consistency and traction/flux equilibrium to solve the multi-scale problems. 
     In order to couple these two methods, we should list the two systems obtained for their 
own parts. According to eqn (18), the system of BEM can be written as: 

 1 1 1 1 1 1 1 1
ss s sc c ss s sc cH T H T G q G q   , (19) 

 1 1 1 1 1 1 1 1
cs s cc c cs s cc cH T H T G q G q   , (20) 

where subscript s represents self-boundary nodes; subscript c represents EDM and BEM 
common interface nodes; the superscript 1 represents that the coefficient matrix or vector 

belong to BEM. For example, 
1
cq  is the heat fluxes of EDM and BEM common interface 

nodes on the BEM computational domain. 
     The system of EDM can be written as: 

 

2 2 2 2

2 2 2 2 2
nn nc n n

cn cc c c c

A H x y

A H T y q

     
          

, (21) 

where A represents the coefficient matrix of the unknowns x (unknown displacements and 
tractions); H represents the coefficient matrix of displacements; y represents the vector 
forming by multiplying the coefficients with the knowns and adding them; subscript c 
represents EDM and BEM common interface nodes; subscript n represents the other nodes 
in the EDM computational domain; the superscript 2 represents that the coefficient matrix or 

vector belong to EDM; 
2
cq  is the heat fluxes of EDM and BEM common interface nodes on 

the EDM computational domain. 
 

 

Figure 2:  Three kind of nodes in computational domain. 

1

n: the other nodes in EDM

c: EDM and BEM common interface nodes

s: BEM self-boundary nodes
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     Fig. 2 shows those kinds of nodes above directly. In Fig. 2, Ω is EDM computational 
domain. Ω1 is BEM computational domain. 
     For eqns (19) and (20), the unknowns of self-boundary nodes are moved to left-hand side 
of the system and the known values to the right-hand side and then the following equation 
can been obtained: 

 1 1 1 1 1 1 1
ss s sc c s sc cA x H T y G q   , (22) 

 1 1 1 1 1 1 1
cs s cc c c cc cA x H T y G q   , (23) 

where A represents the coefficient matrix of unknowns x; y represents the vector formed by 
multiplying the coefficients with the known values and adding them all. 
     From eqn (22), we can get: 

    11 1 1 1 1 1 1
s ss s sc c sc cx A y G q H T


   . (24) 

     Substituting the above equation into eqn (23), we obtain: 

    1
1 1 1 1 1=c cc cc c cq G H T y



 , (25) 

where 
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     According to displacement consistency condition and traction equilibrium equation, we 
can get: 

 1 2 0c cq q  , (27) 

 1 2
c c cT T T  . (28) 

     Substituting eqns (25), (27) and (28) into the system of EDM (eqn (21)) yields 

    
2 2 2

2

1 1
2 1 1 2 2 1 1+

nn nc s
n

ccn cc cc cc c cc c

A H yx

TA G H H y G y
 

               

. (29) 

     Eqn (29) is the final system of the coupled method. The coefficient matrix 
  1

1 1
cc ccG H



 
is dense, while the other coefficient matrix is sparse. Usually, in the multi-scale problem, the 
number of EDM and BEM common interface nodes (c-nodes) is far less than that of the other 
nodes in EDM (n-nodes).  
     Therefore, the whole coefficient matrix is sparse even though a small part is dense. 

     After solving the system, we can use eqns (25) and (24) to calculate 
1
cq  and 

1
sT . Thus, 

all the unknowns of computational domain can be obtained. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLII  107



 

 

6  NUMERICAL EXAMPLES 
We have already coded the coupled method using FORTRAN code. In this section, an 
example is computed by the codes to verify the correctness of the proposed method and code. 
     The problem to be considered is a 2D heat conduction plate with size of 200×100. We 
divide it into two same parts. The left part is computed by EDM, while the right one is 
computed by BEM. The EDM part is discretized into 100 9-node elements with 441 nodes, 
while BEM part is discretized into 40 3-node boundary elements with 80 boundary nodes as 
shown in Fig. 3. There are 21 common interface nodes in the whole computational domain. 
The left and right sides are insulated, while the top side is imposed with the temperature 
condition of 300 K and the bottom side is subjected to heat flux conditions of 1 W/m2. The 
heat conductivity of the plate is 1 W/(m·K). 
 

 

Figure 3:  EDM and BEM Mesh over the plate. 

     After computing, we extract the temperatures of 21 common interface nodes and compare 
them to the exact solutions (see Fig. 4). From Fig. 4, it can be seen that the computed results 
are in good agreement with the exact solution. This means that both the coupled method and 
the FORTRAN code are correct. 

 

 

Figure 4:  Computed temperatures of 21 common interface nodes and their exact solutions. 
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7  CONCLUSION 
Through the above example, we can conclude that EDM-BEM coupled method can compute 
the heat conduction problem correctly. With the development of our research, the coupled 
method will be applied to the solution of more complicated engineering problems. 
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