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ABSTRACT 
Highly precise magnetic field computations are essential for the design of magnets and coils of high-
end smart sensors in the context of nuclear magnetic resonance (NMR) and electron spin resonance 
(ESR) applications. Here, requirements for numerical magnetic field computations are that the methods 
are precise and mainly robust in the sense of reliable results. Non-linear magnetic materials, induced 
eddy currents, and the infinite surrounding air domain must be accurately considered in the numerical 
model. To this end, a smart combination of the finite element method (FEM) with the boundary element 
method (BEM) including a powerful post-processing is proposed with a focus on the region of interest 
(ROI), which contains the studied sample. Separate BEM domains are defined for the infinite 
surrounding air domain and the ROI. Then, the computational costs are reduced due to the relatively 
small number of relevant boundary elements of the surface of the ROI and a precise and efficient 
evaluation of magnetic fields based on a meshfree BEM post-processing in the ROI is possible. As an 
example, the numerical formulation, the application of the proposed approach, and numerical results 
are shown for the homogeneous field of a permanent magnet. 
Keywords:  boundary element method, finite element method, smart sensors, magnetic fields, 
permanent magnets, nuclear magnetic resonance spectroscopy. 

1  INTRODUCTION 
The concept of a smart sensor is to combine a sensor, which measures a physical value, with 
a low-noise analogue interface circuit and the digital signal processing in a chip [1]. An 
implementation of such a smart sensor within an application specific integrated circuit 
(ASIC) is very advantageous, since it enables in-situ measurements with a high signal-to-
noise ratio. An example for a high-end smart sensor application is to measure free radicals in 
blood samples using a mobile electron spin resonance (ESR) spectrometer [2]. A similar 
design can be applied for nuclear magnetic resonance (NMR) microscopy [3]. 
     Both for ESR and NMR applications, homogeneous magnetic fields in the region of 
interest (ROI) are required, which directly influence the quality of the measured signal. 
Hence, the design of permanent magnets with highly homogenous magnetic fields is of great 
importance for these applications. To this end, a shimming based on accurate numerical field 
computations including optimization techniques and precise measurements is necessary [4]. 
Then, manufacturing tolerances can be compensated, too. Concerning numerical field 
computations, accuracy of the numerical methods is more important than the computational 
costs. However, a significant criterion for the selection of an appropriate numerical method 
is that the numerical model is simple and robust. That means, possible inaccuracies caused 
by the discretized model of the magnet should be minimized. 
     Typically, the magnet consists of permanent magnets, which are embedded into a yoke 
with defined geometrical shape of the pole shoes as a result of the shimming process. The 
yoke is made of magnetic material with a non-linear relation between the magnetic field 
strength 𝑯 and the magnetic flux density 𝑩. Hence, the finite element method (FEM) is well 
suited for accurate numerical computations of the magnetic field inside the magnet. A three-
dimensional FEM model of the magnet takes all relevant effects including stray fields into 
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account. Furthermore, arbitrary complex numerical models of the magnetic material 
properties can be included in the design process of the magnet. However, the truncated 
surrounding air domain affects the magnetic field in the ROI significantly. 
     A very elegant approach to tackle the problem of the infinite air domain is to couple the 
FEM with the boundary element method (BEM). Then, the magnetic fields in the air domain 
are computed using the BEM. Furthermore, a discretization of the ROI is not necessary and 
the magnetic fields are not interpolated but directly computed from the related boundary 
integrals with a high accuracy. 
     In total, a coupled problem must be solved. Modern numerical techniques like iterative 
solvers for the linear system of equations (LSE), enhanced integration techniques for singular 
or nearly singular integrals of the BEM, and matrix compression techniques for the dense 
BEM matrix blocks enable an efficient solution of the problem. 
     A very important step in numerical computations of magnetic fields for smart sensor 
applications is the post-processing. The magnetic fields in the ROI must be computed with 
high accuracy for an evaluation of the homogeneity of the magnetic field. To this end, a 
meshfree post-processing of the BEM in the ROI is very advantageous, since no 
discretization and approximation of the fields is necessary. A modular software concept 
enables a combination of the computed fields for a visualization of the fields both inside the 
yoke, which are computed using the FEM, and inside the BEM controlled ROI 
simultaneously. 
     Here, an accurate and robust approach for the computation of magnetic fields for smart 
sensor applications is presented. First, a scalar potential formulation is discussed, which is 
well suited for this kind of field problems for a solution based on the FEM or the BEM. 
Starting from this overview, a strategy for a coupled application of both methods is shown. 
The focus is on an optimization of the BEM domains related to efficiency and accuracy. 
There, compressed matrix blocks of the corresponding linear equation system as well as 
boundary integrals for a meshfree post-processing are considered. In total, a computational 
method is presented, which is easy to use for a smart sensor designer and which delivers 
reliable and accurate numerical results. 

2  FORMULATION 
A mathematical and numerical formulation for the computation of static magnetic fields is 
required, which enables the determination of magnetic fields in the ROI reliably with a high 
accuracy. There, non-linear material properties of the yoke, small geometrical details of the 
pole shoes, and the infinite air domain must be considered. Furthermore, the formulation 
should be well suited both for the FEM and the BEM. 
     Here, a magnetic scalar potential formulation was chosen, since only configurations with 
permanent magnets as field sources are studied. Then, a scalar potential formulation reduces 
the computational costs in comparison to a more general applicable vector potential 
formulation significantly without a loss of accuracy. 
     First, the scalar potential formulation is revisited with respect to the computation of 
magnetic fields for NMR and ESR applications. Then, numerical models for the non-linear 
magnetic material properties are discussed. Finally, the basic equations for the applied FEM 
and BEM are shown to lay the foundation for the proposed robust field computation 
approach. 

2.1  Scalar magnetic potential 

Since only permanent magnets are used as sources for the magnetic field, a scalar magnetic 
potential 𝜓 suffices to compute the magnetic field strength 𝑯 
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 𝑯 ൌ െ∇𝜓. (1) 

     An important advantage of the scalar magnetic potential is that the computational costs 
are significantly smaller than for a more general applicable magnetic vector potential 𝑨. 
Hence, a much finer discretization can be applied, especially near corners, edges, or at 
geometrical small structures, which is important in terms of accuracy. 
     In a domain with magnetic material properties, the magnetic flux density 𝑩 is obtained 
directly from 𝑯 and the permanent magnet’s magnetization 𝑴 

 𝑩 ൌ 𝜇𝜇𝑯 𝑴, (2) 

with relative permeability 𝜇 and vacuum permeability 𝜇. Starting from 

 ∇𝑩 ൌ 0, (3) 

a partial differential equation for 𝜓 must be solved in each computational domain 

 ∇𝜇∇𝜓 ൌ
ଵ

ఓబ
∇𝑴. (4) 

     The magnetic potential is continuous at domain boundaries 

 𝜓ଵ ൌ 𝜓ଶ. (5) 

     Tangential component of 𝑯 is continuous 

 𝒏ଵଶ ൈ ሺ𝑯ଶ െ 𝑯ଵሻ ൌ 𝟎 (6) 

and its normal component is discontinuous 

 𝜇𝜇ଵ𝐻ଵ  𝑀ଵ ൌ 𝜇𝜇ଶ𝐻ଶ  𝑀ଶ. (7) 

     From eqn (7) it can be seen that the magnetic field strength in high permeable materials 
is much smaller than in the adjacent air domain. This yields to significant numerical 
problems, if 𝜓 and with it 𝑯 is not computed accurate enough. In that cases a difference field 
concept is useful to increase the accuracy of the solution [5]. 

2.2  Non-linear material properties 

A crucial point for accurate magnetic field computations is the model of the non-linear 
magnetic material properties of the yoke and of the pole shoes. In general, a vector hysteresis 
model is necessary to model the magnetization effects within the magnetic domains accurate 
enough. Here, it is sufficient to apply a scalar model and to approximate the relation between 
|𝑩| and |𝑯| with a non-linear function (Fig. 1). 
     Between the measured values, which are drawn in black in Fig. 1, the non-linear function 
is interpolated by piecewise linear functions. For large values of |𝑯| the non-linear function 
is linearly extrapolated. 

2.3  Finite element method 

Second order Lagrange elements are used to discretize the computational domain for a 
solution of the magnetic field problem with the FEM. Applying the Galerkin method yields 
to 

 ሾ𝐾ሺ𝜓ሻሿሼ𝜓ሽ ൌ ሼ𝑏ሽ. (8) 
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Figure 1:  Scalar non-linear model of magnetic material properties. 

ሾ𝐾ሺ𝜓ሻሿሼ𝜓ሽ ൌ ሼ𝑏ሽThe stiffness matrix ሾ𝐾ሺ𝜓ሻሿ depends on the magnetic material properties 
and therefore on 𝜓. The right-hand side ሼ𝑏ሽ contains indirectly the defined magnetization of 
the permanent magnets. During the derivation of (8) it is assumed that the magnetic flux 

through the infinite boundary vanishes and that is 
డట

డ
ൌ 0 respectively. 

     The non-linear system of equations in (8) is solved using a Newton–Raphson method with 
re-computation of the tangential matrix within each iteration step. An adaptive control of the 
damping factor ensures fast convergence. 
     Within each non-linear iteration step, conjugate gradient (CG) method with algebraic 
multigrid as preconditioner is used to solve the linear equation system. 
     After the computation of 𝜓, 𝑩 is evaluated in the ROI based on the nodal values of 𝜓 of 
the finite elements in the ROI. To this end, (1) and (2) are applied with analytical derivatives 
of the Ansatz functions. However, due to the second order Lagrange polynomials for 𝜓 only 
first order polynomials for 𝑩 are obtained. Furthermore, 𝑩 is discontinuous at element 
interfaces. There exist several techniques like the patch recovery method to improve the 
accuracy of 𝑩 [6]. Another often applied approach is to refine the mesh in the ROI. 

2.4  Boundary element method 

In the case of linear magnetic materials, the BEM is very well suited to solve the Laplace 
equation for the magnetic scalar potential 

 ∆𝜓 ൌ 0 (9) 

efficiently with high accuracy. Then, only the domain boundaries are discretized with second 
order Lagrange elements. Applying Galerkin method and Green’s theorem 

 𝜓ሺ𝒓ሻ ൌ  𝐺ሺ𝒓, 𝒓ᇱሻ
డట൫𝒓ᇲ൯

డᇲ
d𝐴ᇱడஐ െ 

డீ൫𝒓,𝒓ᇲ൯

డᇲ
𝜓ሺ𝒓ᇱሻd𝐴ᇱడஐ  (10) 

leads to a linear system of equations 

 ሾ𝐺ሿ ቄ
డట

డ
ቅ ൌ ሾ𝐻ሿሼ𝜓ሽ (11) 

with dense matrix blocks. The infinite domain boundary is implicitly considered by Green’s 
function of three-dimensional Laplace equation 
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 𝐺ሺ𝒓, 𝒓ᇱሻ ൌ
ଵ

ସ

ଵ

|𝒓ି𝒓ᇲ|
. (12) 

     Eqn (10) is valid for each computational domain, i.e. for each material domain in practice. 
Further domains are created by additional cuts of a single domain, which is advantageous for 
instance in the ROI. The computational domains are coupled applying the boundary 
conditions (5) and (7). Furthermore, it is not necessary to compute all domains with the BEM, 
which is the starting point for the proposed coupling with the FEM in the next section. 
     Considering accuracy of the BEM, it is very important to compute singular and strong 
singular integrals accurately. Introducing polar coordinates on the boundary elements around 
the evaluation point, here the integration point of the Galerkin integral, is very advantageous 
to increase accuracy with acceptable computational costs [7]. These integration techniques 
are applicable to nearly singular and nearly strong singular integrals, too, which is relevant 
for accurate field evaluations near domain boundaries, e.g. near the pole shoes in the ROI. 
     To overcome the large memory requirements and computational costs of the dense matrix 
blocks in (10), established matrix compression techniques like the adaptive cross 
approximation (ACA) [8] or the fast multipole method (FMM) [9] are used. The ACA is well 
suited to solve (10) efficiently, especially in the context of a coupling of the BEM with the 
FEM [10]. The FMM can be used both for the solution of the equation system and for the 
post-processing [11]. Furthermore, a modified FMM is the foundation for an efficient 
meshfree post-processing [12], which is applied here to improve the accuracy in the ROI. 

3  ROBUST AND PRECISE MAGENTIC FIELD COMPUTATION 
A robust and precise method for the computation of magnetic fields is presented here. Besides 
the solution of the problem, a focus is set on the evaluation of the magnetic fields in the ROI. 
Starting from the fundamentals of the FEM and the BEM summarized in previous section, 
an approach is developed, which combines both methods very advantageous for the studied 
class of field problems. Finally, latest advances in both methods enable a new coupled post-
processing and evaluation of magnetic fields in the ROI. 
     First, some limits in practical applications of the FEM are shown for precise magnetic 
field computations. Then, an efficient approach for the solution of the equation system is 
shown, which prepares an enhanced post-processing, too. This smart coupling of 
computational methods results then in a powerful and accurate post-processing. 

3.1  Limits of a pure finite element method 

As shown in the previous section, the FEM is in principal very well suited for the type of 
examined magnetic field problems. All material properties can be considered with desired 
accuracy and complexity. A refinement of the volume mesh along with a sufficiently large 
surrounding air domain ensures reliability of the computed fields. However, robustness in 
the sense of simple to use numerical models is missing. For precise computations, the size of 
the air domain and the discretization of the ROI must be chosen very carefully. 
     Here, a three-dimensional model of a magnetic circuit is considered (Fig. 2). Its yoke is 
made of iron with a non-linear magnetization curve as depicted in Fig. 1. Above and below 
the air gap for the ROI, permanent magnets with a remanence flux density of 0.6 T are 
embedded into the yoke. 
     Four different numerical cases have been investigated. The radius of the air domain was 
set to the same value as the size of the yoke and in the second parameter study it was set five 
times the size of the yoke. Furthermore, two different meshes in the ROI have been created. 
The magnetic flux density along a line in the ROI for all four cases is shown in Fig. 3. There, 
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differences between the four studied cases are visible. That means, the quality of the results 
strongly depends on the size of the finite elements in the ROI and of the size of the air domain. 
 

 

Figure 2:  Three-dimensional discretized model of a magnetic circuit. 

 

Figure 3:  Absolute value of magnetic flux density along a line in the ROI. 
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3.2  BEM–FEM coupling for the solution of the problem 

As demonstrated in the previous sub-section, magnetic field computations in the ROI are 
sensitive to discretization and size of the air domain. Hence, robustness in an application of 
the FEM is not guaranteed. To this end, a coupling of the BEM and the FEM is proposed 
here to improve robustness of magnetic field computations both for the solution of the field 
problem and for the post-processing. 
     A coupling of the FEM and the BEM for the solution of magnetic field problems has a 
long tradition [10]. Latest publications for electromagnetic wave problems [13], acoustics 
problems [14], or mechanical problems [15] underline that even today a BEM–FEM coupling 
is competitive and advantageous. However, all recent publications have in common that the 
post-processing is limited to the computation of field values inside the FEM domain or to 
only a few characteristic values in the BEM domain. 
     In the following, the BEM–FEM coupling approach is extended to the post-processing 
with features comparable to a pure FEM post-processing but with accuracy of BEM. To this 
end, a propriate pre-processing and solution of the field problem is considered first. 
     The goal is to compute and to visualize the magnetic field with a high accuracy in the 
ROI. To overcome interpolation errors caused by the volume discretization of the FEM, the 
BEM is selected for the ROI. Then, only the artificial boundary of the ROI must be 
considered to evaluate eqn (10). Normally, the yoke and the pole shoes are discretized using 
relatively small finite elements. Since the test samples in NMR or ESR applications are 
positioned in the centre of the ROI, the BEM boundary of the ROI is not placed directly on 
the surface of the pole shoes but with a small gap to magnetic materials. This enables a layer 
of finite elements, which increase the element size and hence reduce the number of elements 
at the BEM domain surface. Then, an efficient solution of the BEM domain based on 
compression techniques like the ACA or the FMM is possible. A similar approach is used for 
the air domain. There, also a small FEM mesh reduces the number of boundary elements. In 
practice, a compromise between computational costs for the BEM with reduced number of 
elements and for larger FEM domains must be found. Depending on the geometrical 
configuration of the problem, further parts of the air domain can be solved using the BEM. 
The proposed splitting is summarized in Fig. 4. 
     Another advantage of this computational domain splitting is that field singularities, as 
they occur near edges or corners of the pole shoes, are computed within the FEM domain. 
There, increasing the number of elements and of integration points is more efficient than in 
the BEM domain. As a result, relatively smooth boundary values at the BEM domain surfaces 
are obtained, which can be handled with the techniques presented in [7]. 

3.3  BEM–FEM coupling for post-processing 

For a successful magnet design, a powerful post-processing is indispensable. This includes 
evaluation of fields in defined points, for instance along a line as shown in Fig. 3, 
visualization of fields in a plane using colours or arrows, or computation and visualization of 
field lines or isosurfaces. Both accurate values in form of tables or line plots and a three-
dimensional overview of the field characteristics are required for an engineer. 
     The challenge of a BEM–FEM post-processing is to combine the two completely different 
working methods in such a way that this coupling and the splitting of the computational 
domains is invisible for the magnet designer. A classical approach is, to create in the BEM 
domains finite elements and to compute the field values in the nodes of these elements [16]. 
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Figure 4:  Splitting of computational domains for the BEM or the FEM. 

Then, the field values of the FEM and of the BEM are interpolated by standard finite elements 
in the complete domain and enhanced visualization techniques are applicable [17]. However, 
that approach requires a large amount of evaluations of eqn (10) along with large 
computational costs. Hence, an approach, which computes only necessary values, is 
preferred. 
     Here, a meshfree post-processing [12] for the BEM is coupled with a classical FEM post-
processing. This requires several steps to split and combine the numerical results. First, the 
designer defines the type of field evaluation. Then, the post-processing software has to select 
the relevant computational domain automatically. Values and visualization objects in the 
FEM domain are computed based on grid values and in the BEM domain a meshfree 
computation is applied to reduce computational costs and to overcome interpolation 
inaccuracies. Finally, the computed results are composed for virtual reality (VR) or 
augmented reality (AR) visualization. To this end, a strictly modular field computation 
software is required. 
     The software MuPhyN (multiphysics numerics) of the author integrates modules of a fast 
BEM solver, a meshfree BEM post-processing, and an interface to a FEM solver, here to the 
commercial implementation COMSOL Multiphysics (Fig. 5). 
     A key feature of the BEM post-processing module is that the computation of visualization 
objects like field lines [18] or isosurfaces [19] is strongly coupled with the BEM. This enables 
efficient and accurate computations. The visualization objects of BEM and FEM are merged 
in the open source visualization software COVISE (Fig. 6). 
     To achieve the required accuracy, the BEM must be appropriate parameterized. Since the 
transition domain between the yoke and the ROI was introduced, no field singularities occur 

at the BEM domain surface. That means, smooth values of 𝜓 and 
డట

డ
 are obtained at the 

boundary elements. Hence a relatively coarse mesh suffices. On the one hand, a small number  
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Figure 5:  Modular software structure of MuPhyN. 

 

Figure 6:  Merging of visualization objects of BEM and FEM. 

of boundary elements increases the efficiency of the post-processing in the ROI, on the other 
hand the relative distance between the evaluation points and the boundary elements can be 
small. Hence, special treatment of nearly singular and nearly strong singular integrals with 
sufficiently large number of integration points is necessary [7]. 
     An efficient meshfree BEM post-processing is based on the FMM. The FMM compresses 
the integrals of eqn (10) and most boundary elements are considered by a series expansion 
of Green’s function in spherical coordinates, e.g. for the single-layer potential part of  
eqn (10) 

 𝜓ሺ𝒓ሻ ൌ
ଵ

ସ
∑ ∑ 𝑟𝑌ሺ𝜃, 𝜙ሻ

ୀି

ୀ 𝐿. (13) 

The order 𝐿 adjusts the accuracy of the FMM. The local coefficients 𝐿 contain information 
of the boundary values of all boundary elements in the far-field of the evaluation point and 
𝑌ሺ𝜃, 𝜙ሻ are normalized spherical harmonics. 
     To compute the magnetic field strength 𝑯 or the magnetic flux density 𝑩 based on (1), 
the necessary derivatives can be computed in eqn (13) analytically in Cartesian coordinates. 
In a similar way, the double-layer part of eqn (10) is considered. 
     The BEM–FEM post-processing strongly depends on an automatic domain detection 
method. In the FEM domain, the related finite element of the evaluation point is found with 
an octree search and an optimization method. The domain detection in the BEM domain is 
more challenging, since the domain is not discretized [12]. A combination of both approaches 
determines the relevant domain and computational method automatically and is therefore 
applicable in algorithms for field line or isosurface computations. 
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     A bidirectional communication between the software modules in Figs 5 and 6 is necessary 
to evaluate the magnetic fields across BEM and FEM domain boundaries. In the case of 
isosurface computations, an exchange of node coordinates improves smoothness of the 
isosurface, especially if a watertight isosurfaces is determined. For accurate field lines, 
boundaries must be reliably detected to obtain precise coordinates of the intersection point 
of the field line with the domain surface. These coordinates are used as start coordinates of 
the field line segment in the next computational domain. 
     In total, a BEM–FEM post-processing is based on an automatic domain detection, a 
modular software concept of numerical methods, and a deep integration of numerical 
methods with post-processing and visualization techniques. For the latter, access to the 
implementation of the BEM including compression techniques is necessary to modify these 
methods with respect to efficiency and accuracy [18], [19]. From point of view of a magnet 
designer, the proposed approach is easily applicable and transparent concerning the 
computational method. Depending on the user interface of the field computation software, 
most steps of the BEM–FEM coupling can be hidden. 

4  NUMERICAL RESULTS 
The proposed BEM–FEM coupling for the computation of magnetic fields has been tested 
on the magnet introduced in Section 3.1. The yoke and the permanent magnets have been 
discretized with second order tetrahedral Lagrange elements. A relative fine mesh has been 
created to consider the non-linear material properties accurately. A relatively coarse mesh for 
the BEM domain in the ROI and a coarse mesh for the BEM domain of infinite space has 
been applied (Fig. 7). Between the non-linear FEM domains and the two BEM domains, a 
FEM domain is added. In total a mesh with 1,232,772 domains and 4,294 boundary elements 
is obtained. 
 

 

Figure 7:  Discretized model of a magnet for a BEM–FEM coupling. 

     The magnetic properties of the yoke have been modelled based on the non-linear function 
depicted in Fig. 1. The remanence flux density of the permanent magnets is impressed in the 
related domains. Since the boundaries of the two BEM domains are in air, continuity of the 
scalar magnetic potential and of its normal derivative are used as boundary conditions for the 
BEM–FEM coupling. The ACA has been applied to compress the BEM matrix blocks. 
     The non-linear problem was solved after three iteration steps of Newton–Raphson method 
and using BiCGStab solver with direct preconditioner for the underlying linear equation 
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system in 55 minutes on an Intel Xeon CPU E3-1275 v5 with 3.6 GHz clock speed. The 
memory requirements have been 39 GB. 
     The norm of the magnetic flux density in a plane through the magnet is depicted in Fig. 8. 
There, the colour plot has been created using a grid both for the FEM and the BEM domain 
in the shown plane. 
 

 

Figure 8:  Norm of magnetic flux density computed with BEM and FEM. 

     The computation of the field lines shown in Fig. 9 has been coordinated by the software 
MuPhyN. The magnetic flux density in the mesh nodes of the FEM domain was computed 
in advance and the field lines have been computed using the optimized methods of the FEM 
solver. In the BEM domain, the field lines haven been obtained using a meshfree BEM post-
processing with FMM compression of integrals. 

5  CONCLUSIONS 
The computation of magnetic fields with a high accuracy, which is required in smart sensor 
application for NMR or ESR spectroscopy, is implemented by a smart combination and 
coupling of the finite element method and the boundary element method. The proposed 
coupling both for the solution of the problem and for the post-processing simplifies the 
numerical model and ensures reliable numerical results with a high accuracy. In other words, 
the method is robust and accurate. Thereby, a finite element method in combination with a 
state-of-the-art boundary element method is very well suited as an easy-to-use and reliable 
tool for high-end smart sensor design. Mainly the meshfree post-processing of the boundary 
element method along with an efficient compression technique supports high precision 
evaluations of magnetic fields in the region of interest. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLII  85



 

Figure 9:  Field lines of the magnetic flux density in the ROI (red) and in the yoke (blue). 
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