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ABSTRACT 
The boundary element method (BEM) is typically used for solving potential problems and has several 
advantages over the traditional finite element method (FEM). However, the normal derivative of the 
potential appears explicitly as an unknown, with some inherent ambiguity at the corner nodes. 
Moreover, the BEM requires time consuming numerical integration (Gaussian quadrature) along the 
boundary of the domain. In this paper, we propose a new approach of BEM by introducing the weak 
nodal “cap” flux approach defined in the context of the finite element method. The domain integrals 
are eliminated at the discrete level by introducing the FEM approximation of the fundamental solutions 
at every node of the related mesh as basic functions in the Galerkin formulation of the BVP under study. 
The implementation of this new technique appears to be simpler as no numerical integration on the 
boundary of the domain is required so that the method leads to a substantially reduced computational 
burden. Our method is compared to the classical BEM for the numerical solution of the two-dimensional 
Laplace equation. It is observed that the normal flux presents a better behaviour at corners. A loss of 
accuracy may occur but it is compensated by a smaller execution time, allowing a finer mesh. 
Keywords:  finite element method, boundary element method, green functions, electrostatics. 

1  INTRODUCTION 
The numerical solution of potential boundary value problems (BVP) is traditionally obtained 
from the finite element method (FEM) or the boundary element method (BEM) that are well 
documented in the literature as e.g. [1] and [2]. BEM has several advantages over the FEM 
such as a discretization of the surface rather than the volume, consequently reducing the 
number of unknown values and the ability of taking into account domains extending to 
infinity. This method has proved to give very accurate results in particular in case of stress 
concentration or with re-entrant corner configurations. Conversely to the FEM, the normal 
derivative of the potential appears explicitly as an unknown value. It is discretized in the 
same way, e.g. linearly, as the potential along the boundary but appears ill-defined at the 
corner nodes of the boundary mesh. In order to avoid this problem, the nodes of the two linear 
elements meeting at the corner can be shifted inside the two elements. Yet it appears as a 
trick to solve the ambiguity of the flux definition. 
     In this paper, we propose a new BEM formulation based on the FEM solution of 
fundamental solutions (Green’s functions) [3], [4] and on a rational definition of nodal flux, 
as presented in the paper of Bossavit [5]. The domain integrals are eliminated by combining 
the Galerkin formulation of the BVP under study and the one associated to the fundamental 
solution for Dirac delta loading every node of the related mesh. This is in contrast with the 
standard BEM that exploit Green’s second identity. In order to avoid a huge time consuming 
FEM computation of nodal Green’s functions, which would lead to an inapplicability of the 
method for open boundary problem anyway, their exact value is used instead as they are 
known analytically. The main difference with the classical BEM is that finite domain 
elements connected to the boundary are needed in order to well define the nodal fluxes. This 
approach leads to a linear system of equations with a fully populated matrix similarly to 
BEM. The complexity of the method remains as 𝒪ሺ𝑛ଶሻ for the assembly of the system but 
the implementation is simpler as no numerical integration (Gaussian quadrature) on the 
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boundary of the domain is required. Our method is compared to both FEM and BEM for the 
numerical solution of the two-dimensional Laplace equation. 

2  MATHEMATICAL FORMULATION 

2.1  The classical BEM 

The boundary element method has been used for many years for the solution of 2-D and 3-D 
engineering problems with some advantages over the finite element method such as a reduced 
mesh task or a natural open problem treatment capability. In BEM, only the boundary of the 
domain is discretized and the degrees of freedom are typically potential and flux nodal values 
that are interpolated over the boundary elements. A system of linear equations is derived for 
the unknown functions at the boundary points and the potential values at internal points in 
the domain are post-processed. Let us recall the classical boundary formulation for the 
Laplace equation defined on a 2-D domain Ω (𝜕Ω ൌ  Γ௨ ⋃ Γ௡ሻ as illustrated in Fig. 1(a). 

 ∇ଶ𝑢 ൌ 0 in Ω,  with 𝑢 ൌ 𝑢଴ on Γ௨   and   
డ௨

డ௡
ൌ 0 on Γ௡. (1) 

 

(a) (b)

Figure 1:   (a) Typical 2-D domain Ω for the Laplace problem; and (b) Associated boundary 
element discretization. 

In order to establish the formulation, the fundamental solution 𝒢௜ regarding the governing 
equation is employed. It is defined from the Dirichlet problem:  

 ∇ଶ𝒢௜ ൌ െ𝛿௜ in Ω,    with 𝒢௜ ൌ
ଵ

ଶగ
ln

ଵ

௥೔
 on 𝜕Ω, (2) 

where 𝛿௜ is the Dirac delta function at any point 𝑖, assumed internal to begin with. Then the 
domain integrals are eliminated using Green’s second identity so that there is obtained: 

 𝑢௜ ൌ ∮ ቀ𝑢
డ𝒢೔

డ௡
െ 𝒢௜

డ௨

డ௡
ቁ 𝑑Γడஐ . (3) 

The discretization 𝜕Ω෢  of the boundary 𝜕Ω into elements Γ௝ (Fig. 1(b)) leads to: 

 𝑢ො௜ ൌ ∑ ׬
డ𝒢೔

డ௡
𝑢ො୻ೕ

𝑑Γ௝∈డஐ෢ െ ∑ ׬ 𝒢௜𝑞 ෝ𝑑Γ,୻ೕ௝∈డஐ෢  (4) 
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where 𝑞ො denotes the approximate normal derivative. In order to assembly a consistent system 
of equations, eqn (4) must be written by choosing every node 𝑖 of the boundary 𝜕Ω෢  as the 
Dirac point. In this situation, a geometric factor 𝑐௜ is affected to the left-hand side of (4) so 
that: 

 𝑐௜ 𝑢ො௜ ൌ ∑ ׬
డ𝒢೔

డ௡
𝑢ො୻ೕ௝∈డஐ෢ 𝑑Γ െ ∑ ׬ 𝒢௜ 𝑞ො 𝑑Γ.୻ೕ௝∈డஐ෢  (5) 

It is equal to the relative part of the Dirac density embedded in the domain Ω at each node 𝑖, 
i.e. the ratio 𝜃/2𝜋 (𝜃 is the internal angle at node 𝑖 – see Fig. 1(b)). This factor is e.g. equal 
to ½ in case of a smooth boundary and 1 at internal nodes. The boundary potential 𝑢ො  and flux 
𝑞ො are typically interpolated linearly on every element Γ௝. The various integrals are either 
solved analytically or numerically using a standard Gaussian quadrature, depending on 
whether the node 𝑖 belongs or not to the element Γ௝. After prescribing the boundary 
conditions, the procedure leads to a fully populated linear system of equations of which the 
solution consists of the unknown nodal values 𝑢ො௜ and 𝑞ො௜. 
     The computational effort to construct the matrix is an important part in BEM by contrast 
with FEM where it is relatively inexpensive to assemble. It scales as 𝒪ሺ𝑛ଶሻ where 𝑛 is the 
size of the boundary mesh. 

2.2  A new BEM formulation 

The finite element analysis of the Laplace problem (1) is based on the Galerkin problem: 

׬  ∇𝑢ො  ∇𝑁௝ஐ෡ ൌ 0    ∀ 𝑗 ∈ Ω෡ ∖ Γ෠௨,    𝑢ො ൌ 𝑢଴ on Γ௨, (6) 

where the 𝑁௝’s are the classical nodal basis “hat” functions defined on a mesh Ω෡ of the domain 
Ω (Fig. 2). The solution 𝑢 is approached by: 

 𝑢ො ൌ ∑ 𝑁௞ 𝑢ො௞௞∈ஐ෡ . (7) 

 

Figure 2:    Typical finite element triangular mesh and barycentric boxes Σ௝ (“cap” Σ௝ᇱ) for 
an internal (boundary) node 𝑗 (𝑗′). 
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It leads to a sparse system of linear equations that involves the computation of the integrals 
of the form: 

 𝑠௝௞ ൌ ׬ ∇𝑁௝ ∇𝑁௞ஐ෡ 𝑑Ω. (8) 

On the other hand, in the paper of Bossavit [5], the term: 

׬  ∇𝑢ො  ∇𝑁௝ 𝑑Ωஐ෡ ൌ ∑ 𝑠௝௞ 𝑢ො௞௞∈ஐ෡ ൌ Φ௨ෝ,ஊೕ
     ∀ 𝑗 ∈ Ω෡ (9) 

is shown to be equal to the inward flux of ∇𝑢ො  across the “box” Σ௝ associated to node 𝑗 in the 
dual mesh obtained from the barycentric subdivision of the primal mesh as shown in Fig. 2. 
Those weak “box” fluxes vanish for nodes 𝑗 ∈ 𝜕Ω ∖ Γ௨ due to eqn (6) and are interpreted as 
a part of the flux of ∇𝑢ො  through “caps” associated to Dirichlet boundary nodes like 𝑗′ ∈ Γ௨. 
This gives rise to the best (“variationally” correct) estimate of surface charges in 
electrostatics for e.g. the direct computation of capacitance. In this case, the result is shown 
to be exactly the same as the approximate energy value 𝐮ෝ୲𝐒 𝐮ෝ, where 𝐒 ൌ ൫𝑠௝௞൯ is the stiffness 
matrix of the problem. In the following, the parameters Φஊೕ

 are used in place of the 

approximation of the normal derivative 𝑞ො given by the standard BEM. 
     In order to eliminate the domain integral, the 2-D fundamental solution 𝒢௜ of Laplace’s 
equation is employed, as in the standard BEM. In spite of the singularity of the solution, i.e. 
𝒢௜ lies outside Sobolev space 𝐻ଵ, a FEM solution exists [3], [4] and is derived from the 
Galerkin problem associated to eqn (2): 

׬  ∇𝒢መ௜ ∇𝑁௝ 𝑑Ω ஐ෡ ൌ ׬ 𝛿௜ 𝑁௝ 𝑑Ω ஐ෡      ∀ 𝑗 ∈ Ω෡ ∖ 𝜕Ω෢ ,    𝒢መ௜ ൌ
ଵ

ଶగ
ln

ଵ

௥೔
 on 𝜕Ω෢ . (10) 

Consider point 𝑖 be any internal node of the mesh Ω෡ then, in the same way as for 𝑢ො  we can 
write the nodal approximation:  

׬  ∇𝒢መ௜ ∇𝑁௝ 𝑑Ω ஐ෡ ൌ Φ𝒢መ೔,ஊೕ
      ∀ 𝑗 ∈ Ω෡, (11) 

that is the equivalent of (9). Note that we have Φ𝒢መ೔,ஊ೔
ൌ 1. The FEM solution 𝒢መ௜ can be 

expressed as: 

 𝒢መ௜ ൌ ∑  𝑁௝ 𝒢መ௜,௝௝∈ஐ෡ ൌ ∑  𝑁௝ 𝒢መ௜,௝௝∈ஐ෡∖୻෡ೠ
൅ ∑  𝑁௝ 𝒢መ௜,௝.௝∈୻෡ೠ

 (12) 

It is permitted to write, using successive eqns (7), (12), (8), (6) and (9): 

׬  ∇𝑢ො  ∇𝒢መ௜ 𝑑Ω
ஐ෡

ൌ ∑ ൫∑ 𝑠௝௞ 𝑢ො௞௞∈ஐ෡ ൯ 𝒢መ௜,௝௝∈ஐ෡ ∖୻෡ೠ
൅ ∑ ൫∑ 𝑠௝௞ 𝑢ො௞௞∈ஐ෡ ൯ 𝒢መ௜,௝௝∈୻෡ೠ

ൌ ∑ Φ௨ෝ,ஊೕ
 𝒢መ௜,௝ .௝∈୻෡ೠ

 (13) 

Conversely, using eqns (7), adapted to 𝒢መ௜, (11) instead of (9) and the boundary conditions for 
𝑢, we can write: 

න ∇𝒢መ௜ ∇𝑢ො 𝑑Ω
ஐ

ൌ ෍ ൭෍ 𝑠௝௞ 𝒢መ௜,௞

௞∈ஐ෡

൱ 𝑢ො௝

௝∉డஐ෢

൅ ෍ ൭෍ 𝑠௝௞ 𝒢መ௜,௞

௞∈ஐ෡

൱ 𝑢ො௝

௝∈డஐ෢

 

ൌ  𝑢ො௜ ൅ ෍ Φ𝒢መ೔,ஊೕ
 𝑢ො௝

௝∈୻෡೙

൅ ෍ Φ𝒢መ೔,ஊೕ
 𝑢ො଴

௝∈୻෡ೠ

.                                     (14) 

Equating (13) and (14), we obtain the following expression where the domain integral is 
eliminated as expected: 

 𝑢ො௜ ൅ ∑ Φ𝒢መ೔,ஊೕ
 𝑢ො௝௝∈୻෡೙

൅ ∑ Φ𝒢መ೔,ஊೕ
 𝑢ො଴௝∈୻෡ೠ

ൌ ∑  𝒢መ௜,௝ Φ௨ෝ,ஊೕ௝∈୻෡ೠ
. (15) 
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A consistent linear system of equations is derived by writing eqn (15) for all the nodes 𝑖 
belonging to the boundary 𝜕Ω෢ . In this situation, the boundary condition of the problem (2) 
must be changed as: 

 𝒢௜ ൌ
ଵ

ଶగ
 ln

ଵ

௥೔
 on 𝜕Ω\ሼ𝑖ሽ    and    

డ𝒢೔

డ௡
ൌ 0 at ሼ𝑖ሽ, (16) 

so that the Galerkin formulation becomes:  

׬  ∇𝒢መ௜ ∇𝑁௝ 𝑑Ω ஐ ൌ 𝛿௜௝ 𝑐௜     ∀ 𝑗 ∈ ሺΩ෡\𝜕Ω෢ ሻ ∪ ሼ𝑖ሽ,     𝒢መ௜ ൌ
ଵ

ଶగ
ln

ଵ

௥೔
 on 𝜕Ω෢ \ሼ𝑖ሽ, (17) 

where 𝛿௜௝ is the common Kronecker symbol and 𝑐௜ is the same geometric factor as used in 
classical BEM. In the FEM context it can be easily shown that: 

 𝑐௜ ൌ Φ𝒢መ೔,ஊ೔
     and     𝑐௜ ൅ ∑ Φ𝒢መ೔,ஊೕ௝∈డஐ෡\ሼ௜ሽ ൌ 0, (18) 

i.e. the Gauss law at the discrete level. 
     Finally the boundary element scheme amounts to solve simultaneously: 

 𝑐௜ 𝑢ො௜ ൅ ∑ Φ𝒢መ೔,ஊೕ
 𝑢ො௝௝∈୻෡೙

ஷ௜

൅ ∑ Φ𝒢መ೔,ஊೕ
 𝑢ො଴௝∈୻෡ೠ

ஷ௜

ൌ ∑  𝒢መ௜,௝ Φ௨ෝ,ஊೕ௝∈୻෡ೠ
         ∀ 𝑖 ∈ 𝜕Ω෢ ,

  
 (19) 

or, in matrix form: 

 𝐇. 𝐮ෝ ൌ 𝐆. 𝚽௨ෝ. (20) 

Rearranging terms, it yields a linear system that is to be solved for unknown potential values 
 𝑢ො௝ on Γ෠௡ and flux values Φ௨ෝ,ஊೕ

 on Γ෠௨. 

     At this point, the exact FEM solution of the BVP (1) is obtained since we have derived 
the eqns (19) by choosing test functions as a linear combination of the hat functions 𝑁௝ in 
(13) and (14). It is clear that there is no interest in doing so. Moreover, this requires the 
computation of the FEM approximations 𝒢መ௜ that is highly time consuming. The trick is then 
to use the exact fundamental solutions 𝒢௜ instead of 𝒢መ௜, i.e. we use the interpolant: 

 𝒢௜,ூ ൌ ∑  𝑁௝ 𝒢௜ሺ𝑗ሻ௝∈ஐ෡ ൌ ∑  𝑁௝
ଵ

ଶగ
ln

ଵ

௥೔ೕ
௝∈ஐ෡ , (21) 

where 𝑟௜௝ is the distance between nodes 𝑖 and 𝑗. Due to the singularity, the infinite value 𝒢௜ሺ𝑖ሻ 
is replaced by a value 𝒢 ೔,೔

∗  from the pair of eqns (18), i.e.: 

 �̂�௜ ൌ ∑ 𝑠௜௞ 𝒢௜ሺ𝑘ሻ௞ஷ௜ ൅ 𝑠௜௜ 𝒢 ೔,೔
∗  (22a) 

and 

  �̂�௜ ൅ ∑ ቀ∑ 𝑠௝௞  𝒢௜ሺ𝑘ሻ௞ஷ௜ ൅ 𝑠௝௜ 𝒢 ೔,೔
∗ ቁ௝∈డஐ෢ \ሼ௜ሽ ൌ 0. (22b) 

Indeed, (22a) express the “cap” flux at any boundary node 𝑖 and (22b) stands for the weak 
flux inside the domain Ω along the boundary 𝜕Ω෢ , due to the Dirac delta 𝛿௜. Solving 
simultaneously these equations leads to the desired value 𝒢 ೔,೔

∗ , along with an approximate 

factor �̂�௜. The modified geometric factor �̂�௜ is not equal to the exact one obtained previously. 
Although we could force �̂�௜ ≜ 𝑐௜, the numerical simulations indicate a better accuracy by 
using the above statements. This is probably due to the consistency brought by the discrete 
Gauss laws given by (22a) and (22b). 
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     It is important to notice that it is not necessary to mesh the whole domain since the internal 
nodes disappear in the boundary formulation (19). A single layer of finite elements along the 
boundary is sufficient. This is even mandatory in the case of an open boundary problem. In 
this case, the right-hand side of eqn (22b) is equal to unity due to the integral at infinity. 
     Finally, notice that the computational effort to construct the matrix scales as 𝒪ሺ𝑛ଶሻ as in 
classical BEM. However it does not require any integration so that a reduction by a factor of 
about 𝑁ீ is expected when using a 𝑁ீ-point Gaussian quadrature. 

3  NUMERICAL RESULTS 
The method has been applied to several simple electrostatic problems in order to estimate the 
basic performance of our numerical scheme. We have implemented both our method and the 
classical BEM with MATLAB® software for the ease of analysis and exploitation of the 
results. The boundary integrals are calculated with a Gaussian quadrature method with seven 
points in our BEM implementation. COMSOL Multiphysics® has been used for the 
generation of the various meshes required by the simulations.  

3.1  A closed geometry example: the square coaxial capacitor 

First of all, we consider the square coaxial air capacitor arrangement depicted in Fig. 3. The 
governing equation is given by eqn (1), up to the absolute permittivity 𝜀଴. The prescribed 
potential values on the Dirichlet boundaries Γ௨ଵ and Γ௨ଶ are 𝑢ଵ ൌ 1 V and 𝑢ଶ ൌ 0 V, 
respectively. The problem can be analysed either on the whole geometry or on a reduced 
geometry considering some symmetry. In the following, both approaches are investigated in 
order to assess the various corner effects on the normal flux value such as the re-entrant 
corner and the Dirichlet to Neumann change in boundary condition. 
 

 
(a) (b)

Figure 3:  A square coaxial configuration. (a) Geometry; and (b) Solution. 

3.1.1  Full geometry configuration 
We consider the complete geometry of the problem of which a finite element mesh is shown 
in Fig. 4(a). Uniform meshing is applied in order to get a reference convergence behaviour. 
A comparison has been carried out between our method and the classical BEM. First, we 
have computed the distribution of the surface charge density 𝜎 ൌ 𝜀଴. 𝜕𝑢 𝜕𝑛⁄  along the inner 
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Dirichlet boundary. Classical BEM gives directly this result since it relates to the 𝑞ො௜ 
parameters at every node of the boundary mesh. In our method, the nodal normal derivatives 
can be reasonably deduced from the nodal “cap” flux value Φ௨ෝ,ஊ೔

 by using the following 
ansatz: 

 𝑞ො௜ ൌ
஍ೠෝ,ಂ೔

௦೔
, (23) 

where the cross section 𝑠௜ is chosen as shown in Fig. 4(b), though it is not strictly correct as 
explained in [5]. 
 

(a) (b)

Figure 4:  (a) FE-mesh; and (b) Computation of the normal derivative from nodal “cap” flux. 

     The results are plotted in Fig. 5 along the path AB depicted in Fig. 3(a) for a boundary 
mesh of size 𝑛 = 768, superimposed to the “exact” one, obtained from a FEM simulation with 
a very fine mesh. It is clear that the normal derivative at re-entrant corners A and B presents 
a bad accuracy with standard BEM though it is better with the new technique. The 
computation of the surface charge value 𝑄 distributed on the Dirichlet boundary Γ௨ଵ has also 
been performed. It is obtained by summing the “cap” flux values along the boundary in the 
proposed method, and a boundary integration of the normal flux 𝑞ො for BEM. The reference 
value 𝑄 ൌ 10.23409 C is obtained analytically following the method described in [6]. Fig. 
6(a) presents the convergence results where it can be observed a loss in accuracy despite the 
better behaviour of the normal derivative reported in Fig. 5. However, as explained in Section 
2, since the computational effort is reduced in a factor of 𝑁ீ chosen equal to 7 here, our 
technique remains competitive in this respect as shown in Fig. 6(b) where the results of BEM 
have been shifted to the right accordingly that is, taking into account the complexity of 
𝒪ሺ𝑛ଶሻ, by log(𝑁ீ). 
     The charge has also been computed by the finite element method. It can be derived from 
either the electrostatic energy 𝑊, i.e. 𝑄 ൌ 2𝑊/𝑈, or by summing the “cap” flux values along 
the boundary. Both method leads exactly to the same value for the charge 𝑄 as suggested in 
[5]. The convergence of FEM appears to be very close to our method as observed in Fig. 6(a). 

3.1.2  L-shaped geometry configuration 
A quarter of the geometry of the coaxial configuration is now considered as presented in  
Fig. 7(a). From symmetry argument, the Neumann condition is applied on the parts Γ௡ଵ and 
Γ௡ଶ. Again, a uniform triangle mesh is applied. The distribution of the normal derivative on 
the path OB (Fig. 7(b)) is again computed. Here we point out a discrepancy at point O due to  
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Figure 5:    Square coaxial configuration: surface charge density distribution along path AB 
(𝑛 = 768). Comparison of numerical (symbols) and exact (full line) results. 

 
(a) (b)

Figure 6:    Square coaxial configuration: relative error on the surface charge 𝑄 with respect 
to (a) The size 𝑛; and (b) The computational burden 𝑡௖௣௨. 

the change in boundary condition as well as at re-entrant corner B as in Section 3.1.1. The 
computation of the surface charge value 𝑄 distributed on the Dirichlet boundary Γ௨ଵ gives 
the error results shown in Fig. 8. Now it is clear that our method outperforms the classical 
methods for the computation of this global quantity. The loss in accuracy of standard BEM 
is due to the underestimation of the normal flux at corner O. The results obtained from a FEM 
analysis are also plotted and lie between the two BEM techniques. 
     The same comparison study has been conducted for the potential value at internal points 
1, 2 and 3 that are chosen as indicated in Fig. 7(a). The numerical results are compared to 
reference values that are deduced from a FEM analysis with a dense triangulation: 𝑢ଵ ൌ
0.8787 V, 𝑢ଶ ൌ 0.2865 V, 𝑢ଷ ൌ 0.7916 V. We now restrict the comparison to the new 
method and the BEM. Fig. 9 shows the results for equal computational burden. They are not 
better for all points with our method. Clearly, accuracy at point 3 is far better due to a bad 
accuracy at the nearby Dirichlet/Neumann corner with BEM but is not so good for point 1 
although re-entrant corner presents problem with BEM. From an execution time point of 
view, the comparison indicates that our method remains competitive. 
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(a) (b)

Figure 7:   L-shaped configuration. (a) Solution; and (b) Surface charge density distribution 
along path OB (𝑛 = 248). Comparison of numerical (symbols) and exact (full 
line) results. 

 

Figure 8:  L-shaped configuration: relative error on the surface charge. 

 

Figure 9:   L-shaped configuration: relative error on the potential value at internal points 1, 
2 and 3. 
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3.2  An open boundary problem 

As an advantage of BEM lies in the ability of treating open boundary problems, we consider 
the situation of a symmetric parallel wire capacitor as shown in Fig. 10. The prescribed 
potential values on the Dirichlet boundaries Γ௨ଵ and Γ௨ଶ are 𝑢ଵ ൌ െ1/2 V and  𝑢ଶ ൌ 1/2 V, 
respectively. Similar numerical analysis has been conducted concerning the surface charge 
density along the boundary Γ௨ଵ and the related global charge 𝑄. Classical electromagnetism 
gives analytical results for these quantities so that an error analysis can be performed. The 
results are shown in Fig. 11. 
 

 

Figure 10:  Parallel wire capacitor (𝑅 ൌ 0.2 m, 𝐷 ൌ 1 m). 

 
(a) 

 

 
(b) 

Figure 11:   Parallel wire capacitor. (a) Surface charge density (𝑛 = 192); and (b) Error on 
the charge 𝑄 on conductor 1. 
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     Fig. 11(a) shows that surface charge density is very well reproduced by both methods. 
From Fig. 11(b), comparison of errors on the total charge value is shown to be lower with 
our method pointing out a better accuracy though convergence rate appears to be higher with 
standard BEM for more refined mesh. This last point should be further investigated. 

4  DISCUSSION AND CONCLUSION 
In this paper, we have proposed a new BEM formulation based on the FEM solution of the 
fundamental solution and on a “variationally” correct definition of nodal flux. The main 
difference with the classical BEM is that at least a layer of finite domain elements connected 
to the boundary is needed. The implementation is simpler as no numerical integration on the 
boundary of the domain is required. Numerical examples have been conducted in order to 
compare both our method and the classical BEM. The new scheme exhibits the advantage of 
an unambiguous definition of the normal flux when corners are present in the geometry. 
However, the computation of global quantities such as the charge or potential at internal 
nodes are sometimes less accurate. Further investigation is needed in order to analyse the 
influence of the quality of the finite element mesh that is necessary along the boundary. 
Indeed, numerical experiments show that it affects the accuracy. This point requires some 
improvements and clarifications. Yet the method is competitive since the computational 
burden is significantly reduced. Extension of the method to the Poisson equation and multi-
domain configurations are straightforward and have been tested but not presented in the 
paper. Moreover, the proposed technique can be easily interfaced with finite elements in a 
FEM/BEM coupling since the “cap” flux is intrinsically related to the FEM. This will be the 
subject of a future paper. 
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