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ABSTRACT 
In this paper, a new approach is developed for the computation of vortex sheet intensity in vortex 
methods for 3D flow simulation. The problem is reduced to a boundary integral equation of the second 
kind on the body surface with respect to an unknown vector variable. The proposed technique makes it 
possible to improve the accuracy significantly in comparison to the technique traditionally implemented 
in vortex methods. A Galerkin-type approach is used with piecewise-constant basis functions. The 
coefficients of the resulting algebraic system are expressed through double surface integrals, calculated 
over the mesh cells. A semi-analytic technique is developed for the integrals calculation; integration 
over one cell is carried out analytically, while at the integration over the other cell (having common 
edge or vertex with the first one), the integrand is singular. Analytic expressions are obtained for 
singular parts of integrands and for the results of their integration. The regular parts of the integrands 
are integrated numerically. The developed approach provides less than 0.1% error. The regularization 
technique is developed for a divergence-free vortex sheet reconstruction on the body surface. The 
developed approach works well on coarse and non-uniform surface meshes for complex-shaped bodies, 
which is important for engineering applications. 
Keywords:  vortex methods, double layer potential, vortex sheet, boundary integral equation, 
singularity exclusion, numerical integration. 

1  INTRODUCTION 
The problem of 3D incompressible flow simulation around rigid and immovable body is 
considered. The governing equations for the outer flow around the body are the  
Navier–Stokes equations with the no-slip boundary conditions on the body surface K  and 
perturbation decay conditions on infinity [1]. 
     It is well-known that in order to take into account the presence of the body in the flow, it 
is possible to replace it with the vortex sheet of unknown intensity ( )r , placed on the body 

surface, Kr , which generates the velocity field ( )V r . Than the summary velocity field 

is the superposition of the incident flow velocity V , velocity field, generated by vorticity 

in the flow domain ( )V r , and the introduced field ( )V r :  

( ) = ( ) ( ), ,S   V r V V r V r r                                         (1) 

where S  is fluid domain, velocities ( )V r  and ( )V r  can be reconstructed through vorticity 

distribution according to the Biot–Savart law:  
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     From a mathematical point of view, the potential of the velocity field V  can be expressed 

through unknown double layer potential density ( )g r  [2]:  

 

1
( ) = ( ) = ( )

( ) ( ) 4 | |K
g dS 

 


  V r r
n r n r 

 
 (2) 

Note that the velocity field, which corresponds to this potential, can also be written down in 
the following form [2]:  
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where vector ( ) = Grad ( ) ( )g r r n r ; “Grad” means surface gradient operator. One can 

notice, that the expression (3) coincides with the Biot–Savart law for incompressible flows. 
So the potential ( )g r  is closely connected with vortex sheet intensity ( )r . 

     The velocity field ( )V r  given by (1), has discontinuity at the body surface; its limit value 

in the considered case of rigid immovable body is the following:  

 
Grad ( ) ( ) ( )

( ) = ( ) = ( ) , .
2 2

g
K


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r r n r
V r V r V r r


 

Taking into account the no-slip boundary condition in the form =V 0  at the body surface, 

we obtain from (2) and (3) two forms of the integral equation:  

 1 Grad ( )
( ) = ( ) , ,

( ) ( ) 4 | | 2K
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or  

  3

( ) ( ) ( ) ( )
= ( ) , .

4 | | 2K
dS K  

  
   


r r n r

V V r r
r    


 (5) 

It is proven in Kempka et al. [3], that in order to satisfy vector integral eqs (4) and (5), it is 
enough to satisfy the corresponding equations, being projected either onto surface normal 
unit vector or the tangential plane. According to the first approach, i.e., satisfying the 
boundary condition for normal velocity components, we obtain scalar boundary integral 
equation, while in the framework of projection onto the tangential plane the equation  
remains vectorial. 

2  DIRECT RECONSTRUCTION OF THE DOUBLE LAYER POTENTIAL DENSITY 
The most common approach, which is normally used in vortex methods, is the equation (4) 
projection onto normal unit vector, that leads to the hypersingular integral equation with 
respect to the double layer potential. Its approximate solution as a rule is considered to be 
piecewise-constant distribution of the double layer density on surface mesh cells. The 
efficient numerical algorithm for calculation of hypersingular integrals in sense of  
the Hadamard principal values is developed and proved by Lifanov et al. [2]. 
     The idea of this algorithm is based on the fact, that the i -th polygonal panel with double 

layer potential density = constig  put exactly the same contribution ( )i
V  to the velocity field 

given by (1) as a closed vortex filament with circulation =i ig , placed on the panel 

.
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circumfery. So it is possible to consider that the body surface is replaced by system of closed 
vortex lines, and the corresponding vorticity distribution is divergence-free, so it corresponds 
to the Helmholtz fundamental theorems [4]. A similar approach is used in Timofeev [5]. 
     Numerical experiments show this approach works satisfactory for flows simulation 
around smooth bodies of rather simple shape, when the surface mesh is close to uniform. 
However, even in this case the directions of vortex line on the body surface is determined by 
the mesh topology, and can differ significantly from true vorticity surface distribution. This 
can lead to significant error in velocity field reconstruction in neighborhood of the body 
surface, that in turn leads to error in pressure distribution reconstruction. The mentioned 
problems can be partially overcome by representing of the surface vorticity distribution as a 
system of closed vortex filaments – vortex loops, which positions and circulations can be 
found according to [6]–[8] based on known double layer potential distribution. 
     Such approach works perfect, for example, in computer graphics applications [6], where 
it is enough to provide only qualitative results and high accuracy is not required. Its usage 
for flow simulation and hydrodynamic forces calculation is restricted, again, with rather 
simple body geometries and uniform meshes [7]. For essentially non-uniform meshes main 
problems are connected with the poor accuracy of the hypersingular boundary equation 
numerical solution and the large error, that can arise from re-interpolation procedure due to 
high cells area ratio.  

3  VORTEX SHEET INTENSITY RECONSTRUCTION 
The other way to the boundary condition satisfaction is developed in Kempka et al. [3] and 
it supposes the eqn (5) projection onto the tangential plane. Such approach leads to the vector 
boundary integral equation of the second kind,  
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 (6) 

where the right-hand side ( )f r  is known vector function, which in the case of immovable 

body surface depends on the vortex wake influence and the incident flow velocity:  

  ( ) = ( ) ( ( )) ( ) .    f r n r V V r n r  

Note, that the kernel of the equation (6) is unbounded when | | 0 r  . 

     In order to solve it numerically with high accuracy the following assumptions  
are introduced:   

1. The body surface is discretized into N  triangular panels iK  with areas iA  and unit 

normal vectors in , = 1, ,i N . 

2. The unknown vortex sheet intensity on the i -th panel is assumed to be constant 

vector i , = 1, ,i N , which lies in the plane of the i -th panel, i.e., = 0i in .  

3. The integral equation (6) is satisfied on average over the panels, or, the same, in 
Galerkin sense: its residual is orthogonal to the basis functions, where the j-th basis 
function is equal to 1 on the j-th panel and equal to 0  on all other panels.  

     According to these assumptions, the discrete analogue of the eqn (6) can be derived:  
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     To write down the eqn (7) in the form of a linear algebraic system, we choose local 
orthonormal basis on every cell (1) (2)( , , )i i in  , where tangent vectors (1)

i , (2)
i  can be chosen 

arbitrary (in the plane of the cell) and (1) (2) =i i i n  , so (1) (1) (2) (2)=i i i i i    , and we can 

project (7) for every i -th panel onto directions (1)
i  and (2)

i  [9]–[11]. 

     Note, that the obtained algebraic system has infinite set of solutions; in order to select the 
unique solution, the additional condition for the total vorticity (the integral from the vortex 
sheet intensity over the body surface) should be satisfied:  

 ( , ) = ,rK
t dS r 0   

which can be easily written down in the discretized form. 
     The resulting algebraic system is overdetermined, so it should be regularized similarly to 
[2] by introducing the regularization vector 1 2 3= ( , , )TR R RR :  
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 (8) 

where the coefficients ( )k
ij  and k

ib , , = 1, ,i j N , = 1,2k , are expressed as the following:  
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     Similar approach, based on the projection of the boundary integral equation onto the 
tangential direction, has been investigated in Kuzmina et al. [12] for 2D modifications of 
vortex methods, and it is shown, that it allows for significant improvement of the accuracy 
of numerical solution. It should be noted, that in 2D case the resulting linear algebraic system 
has ( 1) ( 1)N N    size ( N  is number of panels on the 2D airfoil surface line 

discretization; the regularization variable R  is scalar), but in the discussed 3D case matrix 
size is twice as number of panels: (2 3) (2 3)N N   . 

     In contrast to 2D case, when the exact analytic expressions can be derived [13] for all the 
coefficients of the linear system, which is an analogue of the system (8), for 3D case it is 
impossible to calculate the integrals in expressions (9), but it is possible to develop efficient 
semi-analytical algorithm [9]–[11], which provides rather high accuracy. 

4  SEMI-ANALYTICAL TECHNIQUE FOR THE COEFFICIENTS CALCULATION 
The coefficients ( )k

ij  of the linear system (8) should be calculated for all the pairs of the 

panels on the surface mesh; however note, that ( ) =k
ii 0  due to the flatness of the panels, 

while their self-influence is taken into account through the second (non-integral) term the 
eqn (7), which corresponds to the terms ( ) / 2k

i  in (8). In the case of i j  let  

us denote:  
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( ) ( ) ( )
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 (10) 

     The integral ijI  in (10) is calculated over the triangular panels iK  and jK ; the i-th panel 

we call hereinafter “control panel”, and the k -th one – “influence panel”. 
     The problem, that is very similar to calculation of the ijI  coefficients, arises in the 

boundary element method (BEM, [14]). There are some known approaches to approximate 
calculation of such integrals, for example the Taylor – Duffy method, but the corresponding 
numerical procedures have high computational cost [15]. 
     The inner integral in (10), calculated over the influence panel jK , 
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4 | |j K j
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r
J r

r




,                                            (11) 

can be calculated analytically using computer algebra system, such as Wolfram Mathematica, 
or some classic handbooks [16]. In order to write down the resulting formula for it, note that 
it is expressed through the vectors ( )= j

k k s r r , = 1,2,3k , where r  is the position vector of 

the observation point, at which the integral (11) is calculated; ( )j
kr  are position vectors of the 

vertices of the influence panel jK . Introducing unit vectors (hereinafter we denote the unit 

vector, corresponding to arbitrary vector r  as ort( ) = / | |r r r ), 

 ( ) ( ) ( )
1 1= ort( ) = ort( ), = ort( ), =1,2,3,j j j

k k k k k k k k  e s s r r s  

and having in mind that all indices are calculated in modulo 3, the expression for (11)  
now is:  
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where j  means the signed solid angle at which the panel jK  is observed, equal to [17]: 

  1 2 3 1 2 3 1 2 3 2 3 1 3 1 2= 2atan , | | | | | | ( ) | | ( ) | | ( ) | | ,j        s s s s s s s s s s s s s s s  

where 1 2 3s s s  means scalar triple product of the vectors. The function = atan( , )y x  

hereinafter corresponds to usually used in programming languages atan2(y, x) function, 
which means in turn the argument of a complex number =z x iy , or, the same, the angle 

from the interval ( , ]    , for which 2 2sin = y x y  , 2 2cos = x x y  . 

     The vector-function j  has the form 
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4.1  The outer integral calculation in the general case 

The outer integral in (10) over the control mesh cell, 

= ( )ij j rKi

dSI J r , (13)

cannot be analytically expressed through elementary functions in general case, so for the 
approximate computation of the vectors ijI  Gaussian quadrature formulae can be used:  

=1

= ( ) ( ),
NGP

ij j r i p j pKi p

dS A  I J r J  (14)

where GPN  is number of Gaussian points; p  are weights; p  are positions of the Gaussian 

points for triangular mesh cell [18]. 
 The described approach for integrals ijI  computation is applicable, however, only for 

those pairs of the panels, which are non-neighboring, i.e., if they do not have common edges 
and vertices, because in the case of neighboring panels the integrand in (13) becomes 
unbounded in proximity to the common edge/vertex, and the outer integral itself  
become improper (but convergent). Its calculation with high precision straightforwardly by 
using quadrature formulae is difficult, so it is suggested to exclude the singularity from the 
integrand. We write down the integrand ( )jJ r  as a sum of two terms 

reg sing( ) = ( ) ( ),j j jJ r J r J r

where the regular part  

    reg sing sing1
( ) = ( ) ( ) ( ) ( )

4j j j j j j j
    J r r r n r r n 

is a smooth function, which can be easily integrated numerically by using above mentioned 
Gaussian quadratures. For the singular part it is possible to integrate analytically the 
following terms:  

sing sing sing1
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4.2  The outer integral calculation in the case of common edge 

If the panels  and  have a common edge with unit direction vector  (Fig. 1), the 

singular terms have the form (the upper index  for the unit vectors  is omitted):  
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Figure 1:  Mesh cells with common edge. 

     The expression for sing
j , as well as for scalar multipliers in sing

j , can be integrated 

analytically over the control panel iK :  

 sing
0 0( ) = 2 ( ( , , , , , ) ( , , , , , )),j r iKi

dS A q q              r  

sing
12 1 12 2 3 3( ) = ( ( , , , , , ) ( , , , , , ) ( , ) ).j r iKi

dS A q q q               r e e e  

     The expressions for the auxiliary functions 0q , 12q  and 3q  have the following form:  
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Here   and   are angles of the control triangular cell iK , which adjoin the common edge; 

=     ;   and   are angles of the influence triangular cell jK , which adjoin the 

common edge;   is the angle between the planes of the cells iK  and jK  (Fig. 1); the other 

angles are given by the expressions: 

= arccos(cos cos cos sin sin ),         = arccos(cos cos cos sin sin ),         

= arccos(cos cos cos sin sin ),         = arccos(cos cos cos sin sin ),         

* =atan(sin sin sin ,1 cos cos cos ),          ** = atan(sin sin sin , 1 cos cos cos ).          

     The given formulae are valid for arbitrary mutual configuration of the panels iK  and jK , 

except the particular case = = 0   , for which they lead to uncertainty of 0 / 0  type. 

However, carrying out the passage to the limit, it is possible to obtain for this case rather 
simple expressions for 0q  and 12q  functions:  

*
0( , , , , , ) = ,q         

12

3 1
( , , , , , ) = (cos sin ln(1 cos ) sin cos ln(1 cos )).

2 2sin
q            


      

4.3  The outer integral calculation in the case of common vertex 

The scheme, which illustrates the configuration of the panels having common vertex with 
introduced designations is shown in Fig. 2. 
 

 

Figure 2:  Mesh cells with common edge. 
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     The triangular panels iK  and jK  lie in planes, which intersection line has direction unit 

vector 0e , collinear to the vector i jn n . The direction of the vector 0e  is chosen in such a 

way, that scalar triple product 0 > 0ie cn , where vector c  connects the center of the panel iK  

with the common vertex. If the panels iK  and jK  are complanar, i.e., =i jn n 0 , the 

direction of the unit vector 0e  can be chosen arbitrary; to be more specific, we choose it as 

0 1=e e  if 2 3 0 e e  and 0 3=e e  if 2 3 > 0e e , where ke  are unit vectors, which are now 

directed along the edges of the control panel iK  under the assumption, that the common 

vertex has index = 1k  (i.e., its position vector is ( )
1

ir ): 

( ) ( )
1= ort( )i i

k k k e r r , = 1,2,3k . 

      The orientation of the influence panel  is defined by the unit vectors  

 , ,  

and the angles:  

 , . 

     In particular cases when  or  the direction of the vector  should be 

reversed, and the angles  should be recalculated for its new orientation. The same 

operations should be performed in the case, when  and  

simultaneously. 
     Since the vector  is defined, the signed angle between the planes  and  is: 

 ,  

its sign defines the mutual orientation of the triangular cells. 
     Considering the singular part  of  

   

we write down the singular parts of its terms. For the first term  

   

where *
1  and *

2  are expressed through vectors * *
0=k ku e e , * *

0 0= ( )k k v e e e  and the 

unit vector ( )
1= ort( )i b r r :  

 * * *= atan( , ),k k k k k  p v p u   

where  

 * * * *
0 0= (( ) ) (( ) )k k k k k    p b e u u b e v v , = 1,2k .  

jK

* ( ) ( )
1 2 1= ort( )j je r r * ( ) ( )

2 3 1= ort( )j je r r

* * * *
0 0 0= ( , ) = atan( , )k k k j k  e e e e n e e = 1,2k

*
1 =  *

2 =  0e
*
k

* *
1 2 < 0  * *

1 2| |>  

0e iK
jK

0= atan( , )i j i j n n e n n

sing ( )jJ r

 1
( ) = ,

4j j j j j
  J r n n

sing * *
2 1( ) = 2( ),j    r 
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For the particular case at | |= 0kp  the limit value is *
0= atan( , ).k j j b n bn e  The term 

= 0  at | | 0k p  and = sign   at | |= 0kp . 

     For the singular part of the second term in ( )jJ r  we obtain  

 sing * *
2 1( ) = ( ),j   r   

where  

 * * * * ( )
1= ln ( ) , =| | .ib

k k k k b

j

m
m

A


   

 
 

e e b e r r  

As for the panels with common edge, the singular parts sing ( )j r  and sing ( )j r  can be 

integrated analytically over the control mesh cell iK :  

 sing * *
4 2 4 1 4( ) = 2 ( ) ( ) (0) ,j r iKi

dS A q q qq     r        

 sing * * * *
5 2 2 5 1 1( ) = ( ) ( ) ,j r iKi

dS A q q   r e e  

where the coefficient = 0q  at * *
1 2 0    and = 2signq   at * *

1 2 < 0  , and the auxiliary 

functions 4q  and 5q  are the following:  

 41 42
4

( ) ( )
( ) =

sin sin

q q
q

 
 


,    5 51 52( ) = ( ) ( )q q q   . 

The expressions for their terms are rather complicated, but they are expressed through 
elementary functions:  

41( ) = sin sin( )atan sin sin , cos sin cos cot
2 2 2 2

q
              

 
 

sin sin( )atan sin sin , cos sin cos tan ,
2 2 2 2

             
 

 

42

sin sin sin sin sin 1 cos sin
( ) = cos ln cos ln tan tan ,

2 1 cos sin 2 2
q

D

           
 

                
 

51

3 ln 2 sin sin( ) ln(1 cos ) sin sin( ) ln(1 cos )
( ) =

2 sin sin
q

       
 

     
    

1 sin sin cos sin cos sin
ln ln(sin ) ln(sin ),

2 sin sin sin

      
  

   
 

 

52

sin sin sin cos 1 cos
( ) = ln cos ln tan tan

sin sin 1 cos 2 2
q

D

       
  

       
 

1 sin
2 sin sin ln .

2 sin
G

  



  


 

Here the following designations are introduced:  
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2 22= ( ) 4sin sin sin sin cos cos cos sin ,sin
2 2

D
            

 
 

2 2= sin 2( ) 4sin sin sin 2 cos cos cos2 sin ,
2 2

G
           

 
 

= atan sin sin sin , cos sin sin cos cos cos ,
2 2 2 2

                            
 

value   means the angle of the triangular cell iK  which adjoins to the common vertex of 

the panels iK  and jK ;   and   the other angles of the cell iK ;   as earlier is the signed 

angle between the planes of the triangles iK  and jK ;   is the angle between the vector 0e  

and the side of the triangle iK , which is opposite to the common vertex; *
1  and *

2  are the 

angles between the vector 0e  and vectors *
1e  and *

2e , respectively (Fig. 2); for cos , cos , 

cos , cos  and cos  the following expressions are valid:  

cos = sin sin cos cos cos ,          cos = sin sin( ) cos cos cos( ),           
cos = sin cos cos cos sin ,          cos = sin sin( ) cos cos cos( ),           
cos = cos sin cos sin cos .       

These formulae for the integrals from the singular part sing ( )j r  remain correct for arbitrary 

mutual configuration of the triangular cells with common vertex except the case of 
= sin( ) = 0   . For this particular case: 

42 52

1 1 cos sin 1 cos
( ) = 0, ( ) = sin cos ln .

2 sin 1 cos 1 cos
q q

     
  

   
       

 

5  DOUBLE LAYER POTENTIAL RECONSTRUCTION 
After solution of the linear system (8) with respect to cell values of the vortex sheet intensity, 
it is important to provide divergence-free reconstruction of the solution. That means, that the 
numerical solution of (8) in general case doesn’t satisfy the following condition, which is 

analogue of the condition of zero total vorticity flux 
3

neib,

=1

( ) ,q
i i q

q

l    where neib,q
i  is the 

vortex sheet intensity on the panel, which is neighbor to the i -th cell against the q-th edge; 

ql  is the length of the q-th edge. 
     In order to satisfy this condition and provide divergence-free numerical solution, it is 
suggested firstly to reconstruct the double layer density distribution on the body surface, and 
secondly calculate its surface gradient. Moreover, if the double layer density distribution is 
known, it is easy to represent vorticity distribution on the body surface as a set vortex loops, 
that have been mentioned in Section 2. 
     The solution of the linear system (8) corresponds to piecewise-constant vortex sheet 
intensity distribution over the body surface. From the other side, vortex sheet intensity is 
surface gradient of the double layer potential density, multiplied by normal unit vector. It 
means, that the most convenient way to double layer potential density reconstruction is its 
approximation by a continuous function, which is piecewise-linear with respect to all 
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coordinates on every panel. To do it, we consider the nodal values of the potential jg , 

= 1, ,j M  to be unknown; M  is number of vertices of the surface mesh. Then the potential 

density can be represented as FEM-type interpolation using the 1-st order shape functions. 
Let us note positions of all the vertices of the surface mesh as j , = 1, ,j M , and consider 

that the vertices of the i -th triangular panel have indices k
ip , = 1,2,3k . So the shape 

functions, defined on the i -th panel, coincide with barycentric coordinates on the mesh cell:  

( )
| ( ) ( ) |

( ) = , ,
| ( ) ( ) |

l m
i i

l k l k
i i i i

p pk
i i

p p p p

K
  


  

   
 

   
 

where ( , , ) = (1,2,3)k l m , or (2,3,1)  or (3,1,2) .  

     Then the double layer density on the i-th panel is linear function with respect to   and 
has the following form:  

3
( )

=1

( ) = ( ), .k
i

k
i ip

k

g g K     

The surface gradient of this distribution of the double layer on the every i -th panel, 

multiplied by unit normal vector in  gives thus the constant vector, which physical sense is 

approximate value of divergence-free vortex sheet intensity on the corresponding panel:  
3

* ( )

=1

= (Grad ), ,k
i

k
i i i ip

k

g K   n   

where the surface gradients of the shape functions ( )Grad k
i  are constant vectors. 

     Now the unknown values jg  can be found from the least-squares procedure: 

 * 2

=1

= | | min.
N

i i
i

      

Taking partial derivatives of   with respect to jg , = 1, ,j M , and making them equal to 

zero, we obtain linear system of M M  size with symmetric, but not positively-defined 
matrix. Moreover, it is clear, that this system is singular (in practice, due to the truncation 
errors, it can be non-singular, but ill-conditioned), that follows from the fact, that the potential 
density value can be chosen arbitrary at some specified point. To be more specific, we assume 

= 0Mg , that means that the last row and last column in the least-squares matrix should be 

nullified, the diagonal coefficient can be chosen arbitrary (non-zero) and the last coefficient 
in the right-hand side also should be nullified. The resulting regularized matrix is now 
symmetric and positively defined. 

6  NUMERICAL RESULTS 
In order to estimate the accuracy of the developed technique of singularity exclusion and its 
analytical integration, some model problems were considered for the bodies, shown in  
Fig. 3. For all the bodies (sphere, wing of the finite span, complex-shaped body) unstructured 
essentially non-uniform triangular mesh was generated by using preprocessor SALOME and 
NETGEN algorithm. Some parameters of the surface meshes are given in the Table 1. 
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Figure 3:    Sphere, wing of the finite span, complex-shaped body and the surface triangular 
meshes on their surfaces. 

Table 1:  Mesh parameters and relative errors for the coefficients  calculation. 

 Sphere Wing Complex-shaped body 

Number of cells 342 742 636 

Max cells area ratio 33.9 2.9 1007.9 
Max cells area ratio for 
neighbouring cells 

3.4 2.9 9.3 

Max cells sides ratio 2.0 1.7 2.4 

Min/max cell angle 30.2°/98.7° 35.6°/91.9° 22.4°/122.6° 

, method 1 0.40 2.28 0.65 

, method 2 0.054 0.053 0.052 

, method 3 0.00092 0.0018 0.00098 
 
     The exact values of the  coefficients are unknown, so instead of exact ones we 

considered approximate numerical values of the corresponding integrals (13), calculated by 
using computer algebra system Wolfram Mathematica to be reference values. 
     In Table 1 the values of the maximal relative error  

 

are given for three different methods of the integrals (13) calculation:   

1. By using formula (13), where for  calculation in (11) also the Gaussian 

quadrature formulae are used; 
2. According to formulae (13), where the inner integral  is calculated analytically 

(exactly) using formula (12); 
3. Semi-analytically according to the developed technique of singularity exclusion and 

its analytical integrating for the mesh cells having common edge or common vertex.  

ijI





ijI

*

*

max | |
= max , , = 1, , ,

max | |

ij ij
j

i
ij

j

i j N
 



 

I I

I


( )jJ r

( )jJ r
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     It is seen, that the developed technique allows for significant improvement of the accuracy 
of the boundary integral equation approximation. 

7  CONCLUSION 
A procedure of the vortex sheet intensity reconstruction is proposed, which consists of two 
steps. Firstly, the boundary integral equation of the second order is solved by using Galerkin 
approach, which expresses the equality between the tangential components of flow velocity 
limit value and the body surface velocity. Secondly, the least-squares procedure is 
implemented, which permits one to find nodal values of the double layer potential and then 
reconstruct divergence-free vortex sheet intensity distribution.  
     For the coeffcients of the linear system, which approximates the boundary integral 
equation, a semi-analytical approach is suggested, which allows for their calculation with 
high accuracy. It is shown that the developed algorithm permits one to improve significantly 
the accuracy of solution for the complex-shaped bodies with low-quality surface meshes.  
     This procedure be used in vortex methods implementations where it is necessary to 
simulate vorticity generation process on the body surface at every time step.  
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