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ABSTRACT 
The isogeometric analysis (IGA) has been applied to the boundary element method (BEM), forming 
the IGA BEM. In this work, we introduce the IGA BEM to 2D acoustic shape optimization. The key 
treatment is the acoustic sensitivity analysis using the adjoint variable method (AVM). Compared with 
the direct differentiation method (DDM), the AVM is more suitable for problems with a large number 
of design variables. The gradient-based optimization solver is applied in order to update the design 
variables during the optimization iteration process and the Burton-Miller method is adopted to conquer 
the fictitious eigen-frequency problem in solving exterior acoustic problems. An example of scattering 
by an infinite rigid cylinder is presented to demonstrate the improved accuracy of IGA BEM. Then we 
verify the efficiency of the developed sensitivity algorithms through the example and demonstrate their 
potential in solving large-scale engineering problems. Finally, an optimization example is provided to 
validate the proposed optimization procedure. Numerical tests show that the optimal results are strongly 
frequency dependent. 
Keywords:  isogeometric analysis, boundary element method, acoustics sensitivity analysis,  
shape optimization. 

1  INTRODUCTION 
Reducing sound emission of structures is of great concern in engineering problems, and shape 
optimization has been proven to be an effective approach [1]. Compared with the 
conventional BEM, the IGA BEM offers a higher accuracy in solving acoustic problems [2], 
as the geometry is accurately described by using the control points. Since the geometry can 
be easily changed by changing the control points, it is very convenient to carry out the shape 
optimization by the IGA BEM. However, gradient-based optimization solvers usually  
require gradient information, which leads to an additional step, i.e. the sensitivity analysis. 
This yields extra computational efforts and thus makes the efficient analysis techniques 
indispensable.  
     In recent years, several works about sensitivity analysis and optimization have been made 
for acoustic problems. Zheng et al. [3]–[5] has made many efforts in sensitivity analysis 
methods by BEM in 3D acoustics. Chen et al. [6]–[9] also investigated sensitivity  
analysis with single design parameter by FEM-BEM both in 2D and 3D acoustics. Liu et al. 
[2] has carried out the shape optimization of noise barrier by IGA BEM with the 
differentiation method (DDM) in sensitivity analysis. However, these aforementioned works 
mainly use the DDM with conventional BEM for the sensitivity analysis. But in many 
engineering problems, multi design variables should be adopted to describe the shape 
accurately, which yields more computational efforts in the sensitivity analysis. To this end, 
this paper presents a shape optimization procedure based on the IGA BEM in 2D acoustics. 
The formulations of the design sensitivity analysis by using the adjoint variable method 
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(AVM) are derived. The gradient-based optimization solver is applied to update the design 
variables for minimizing the sound pressure at observation points. 

2   IGA BEM IN 2D ACOUSTICS 
For the IGA BEM in 2D acoustics, a series of efforts have been made by Chen et al. [1] and 
Liu et al [2]. To conquer the fictitious eigen-frequency problem, we use the conventional 
boundary integral equation (CBIE) and the hypersingular BIE (HBIE) as follows: 
 

            𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 𝑐𝑐(𝑥𝑥)𝑝𝑝(𝑥𝑥) + ∫𝐹𝐹(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) = ∫𝐺𝐺(𝑥𝑥,𝑦𝑦)𝑞𝑞(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) ,            (1) 
 

𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶: 𝑐𝑐(𝑥𝑥)𝑞𝑞(𝑥𝑥) + ∫𝐹𝐹1(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) = ∫𝐺𝐺1(𝑥𝑥,𝑦𝑦)𝑞𝑞(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) ,         (2) 
 

where 𝐺𝐺(𝑥𝑥,𝑦𝑦)、𝐹𝐹(𝑥𝑥,𝑦𝑦)、𝐺𝐺1(𝑥𝑥,𝑦𝑦)、𝐹𝐹1(𝑥𝑥,𝑦𝑦) are the kernel functions. According to the 
definition of IGA, we have the NURBS interpolation [2] as follows:  
 

𝑥𝑥(𝜉𝜉) = ∑ 𝑅𝑅𝑖𝑖,𝑝𝑝𝑔𝑔
𝑔𝑔 (𝜉𝜉)𝑋𝑋𝑖𝑖,𝑛𝑛

𝑖𝑖=1

𝑝𝑝(𝜉𝜉) = ∑ 𝑅𝑅𝑖𝑖,𝑝𝑝𝑓𝑓
𝑓𝑓 (𝜉𝜉)𝑝𝑝𝑖𝑖

𝑛𝑛𝑓𝑓
𝑖𝑖=1

𝑞𝑞(𝜉𝜉) = ∑ 𝑅𝑅𝑖𝑖,𝑝𝑝𝑓𝑓
𝑓𝑓 (𝜉𝜉)𝑞𝑞𝑖𝑖.

𝑛𝑛𝑓𝑓
𝑖𝑖=1

,                                             

(3) 
 

     Substituting eqn (3) into the CBIE and HBIE, the discretized isogeometric BIEs can be 
obtained as:       

𝑐𝑐 �𝒙𝒙�𝜉𝜉𝑖𝑖���𝑅𝑅𝑗𝑗,𝑝𝑝𝑓𝑓
𝑓𝑓 �𝜉𝜉𝑖𝑖�𝑝𝑝𝑗𝑗

𝑛𝑛𝑓𝑓

𝑗𝑗=1

+ ���� 𝐹𝐹 �𝒙𝒙�𝜉𝜉𝑖𝑖�,𝒚𝒚(𝜉𝜉)�𝑅𝑅𝑗𝑗,𝑝𝑝𝑓𝑓
𝑓𝑓 (𝜉𝜉)𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉

𝜉𝜉𝑒𝑒+1

𝜉𝜉𝑒𝑒
�

𝑛𝑛𝑓𝑓

𝑗𝑗=1

𝑁𝑁𝑒𝑒

𝑒𝑒=1

𝑝𝑝𝑗𝑗 

 = ∑ ∑ �∫ 𝐺𝐺 �𝒙𝒙�𝜉𝜉𝑖𝑖�,𝒚𝒚(𝜉𝜉)�𝑅𝑅𝑗𝑗,𝑝𝑝𝑓𝑓
𝑓𝑓 (𝜉𝜉)𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉𝜉𝜉𝑒𝑒+1

𝜉𝜉𝑒𝑒
�𝑛𝑛𝑓𝑓

𝑗𝑗=1
𝑁𝑁𝑒𝑒
𝑒𝑒=1 𝑞𝑞𝑗𝑗     𝑖𝑖 = 1,2,⋅⋅⋅,𝑛𝑛𝑓𝑓, (4) 

𝑐𝑐 �𝒙𝒙�𝜉𝜉𝑖𝑖���𝑅𝑅𝑗𝑗,𝑝𝑝𝑓𝑓
𝑓𝑓 �𝜉𝜉𝑖𝑖�𝑞𝑞𝑗𝑗

𝑛𝑛𝑓𝑓

𝑗𝑗=1

+ ���� 𝐹𝐹1 �𝒙𝒙�𝜉𝜉𝑖𝑖�,𝒚𝒚(𝜉𝜉)�𝑅𝑅𝑗𝑗,𝑝𝑝𝑓𝑓
𝑓𝑓 (𝜉𝜉)𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉

𝜉𝜉𝑒𝑒+1

𝜉𝜉𝑒𝑒
�

𝑛𝑛𝑓𝑓

𝑗𝑗=1

𝑁𝑁𝑒𝑒

𝑒𝑒=1

𝑝𝑝𝑗𝑗 

 = ∑ ∑ �∫ 𝐺𝐺1 �𝒙𝒙�𝜉𝜉𝑖𝑖�,𝒚𝒚(𝜉𝜉)�𝑅𝑅𝑗𝑗,𝑝𝑝𝑓𝑓
𝑓𝑓 (𝜉𝜉)𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉𝜉𝜉𝑒𝑒+1

𝜉𝜉𝑒𝑒
�𝑛𝑛𝑓𝑓

𝑗𝑗=1
𝑁𝑁𝑒𝑒
𝑒𝑒=1 𝑞𝑞𝑗𝑗     𝑖𝑖 = 1,2,⋅⋅⋅,𝑛𝑛𝑓𝑓, (5) 

where eN  is the number of NURBS elements, and 1[ , ]e eξ ξ +  is a NURBS element. 
     According to the Burton-Miller method, giving coefficient α  as follows: 

 
𝑘𝑘 < 1,𝛼𝛼 = 𝑖𝑖,
𝑘𝑘 ≥ 1,𝛼𝛼 = 𝑖𝑖

𝑘𝑘
,                                                      (6) 

 
where k  is the wave number. Then we have the following equation: 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛼𝛼𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶 = 0.                                                 (7) 
 

     Performing linear combination to eqn (7), the following linear algebraic equations in 
matrix form are obtained: 
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𝑯𝑯𝑝𝑝 = 𝑮𝑮𝑞𝑞.                                                        (8) 

 
     Moving all the unknowns of eqn (8) to the left-hand side and all the known values to the 
right-hand side, the linear equations are given by: 

 
𝑨𝑨𝑋𝑋 = 𝑏𝑏.                                                          (9) 

 
     Finally, we obtain the unknowns by solving eqn (9). 

3  ACOUSTIC SENSITIVITY ANALYSIS WITH ADJOINT VARIABLE METHOD 
Sensitivity analysis plays a great role in the shape optimization. Here the coordinates of 
control points in IGA can be chosen as the design variables. Some works about sensitivity 
analysis using the DDM [1]–[3], [5]–[7] have been developed. According to the DDM, eqns 
(1) and (2) can be differentiated with respect to the design variables as follows: 
 

𝑐𝑐(𝑥𝑥)�̇�𝑝(𝑥𝑥) + �𝐹𝐹(𝑥𝑥,𝑦𝑦)�̇�𝑝(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) + ��̇�𝐹(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) + �𝐹𝐹(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑦𝑦)𝑑𝑑�̇�𝑑(𝑦𝑦) 

 
= ∫𝐺𝐺(𝑥𝑥,𝑦𝑦)�̇�𝑞(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) + ∫ �̇�𝐺(𝑥𝑥,𝑦𝑦)𝑞𝑞(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) + ∫𝐺𝐺(𝑥𝑥,𝑦𝑦)𝑞𝑞(𝑦𝑦)𝑑𝑑�̇�𝑑(𝑦𝑦) ,          (10) 

 

𝑐𝑐(𝑥𝑥)�̇�𝑞(𝑥𝑥) + �𝐹𝐹1(𝑥𝑥,𝑦𝑦)�̇�𝑝(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) + ��̇�𝐹1(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) + �𝐹𝐹1(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑦𝑦)𝑑𝑑�̇�𝑑(𝑦𝑦) 

 
= ∫𝐺𝐺1(𝑥𝑥,𝑦𝑦)�̇�𝑞(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) + ∫ �̇�𝐺1(𝑥𝑥,𝑦𝑦)𝑞𝑞(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) + ∫𝐺𝐺1(𝑥𝑥,𝑦𝑦)𝑞𝑞(𝑦𝑦)𝑑𝑑�̇�𝑑(𝑦𝑦) ,      (11) 

 
where the upper dot � ̇ � denotes the differentiation with respect to the design variables. 
     Substituting eqn (3) into eqns (10) and (11), and still applying the Burton-Miller method, 
we get the linear algebraic equations in matrix form as: 

 
�̇�𝑯𝑝𝑝 + 𝑯𝑯�̇�𝑝 = �̇�𝑮𝑞𝑞 + 𝑮𝑮�̇�𝑞,                                              (12) 

 
where the matrix 𝑯𝑯、𝑮𝑮 have been calculated in the IGA BEM. By swapping the unknowns, 
we can obtain the unknown sensitivity values by the following equation: 
 
                                                           𝑨𝑨�̇�𝜓 = 𝑩𝑩�̇�𝜙 − �̇�𝑯𝑝𝑝 + �̇�𝑮𝑞𝑞,                                            (13) 

 
where �̇�𝜓 is the unknown sensitivity values. If the sound pressures at the field points are 
included in the objective function, the sensitivity values are given by: 
 

�̇�𝑝𝑖𝑖𝑛𝑛𝑛𝑛𝑒𝑒𝑖𝑖(𝑥𝑥) = {𝑢𝑢}𝑇𝑇�̇�𝜓 + {𝑘𝑘}𝑇𝑇 �̇�𝜙  + {�̇�𝑒}𝑇𝑇𝑞𝑞 − ��̇�𝑏�
𝑇𝑇
𝑝𝑝.                     (14) 

 
However, if the objective function in optimization is only related to the field points, AVM 
could be used. According to eqn (13), we have: 

 
                                                  �̇�𝜓 = 𝑨𝑨−1�𝑩𝑩�̇�𝜙 − �̇�𝑯𝑝𝑝 + �̇�𝑮𝑞𝑞�.                                       (15) 
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 Introducing the adjoint equations as follows: 

𝑨𝑨𝑇𝑇𝜂𝜂 = 𝑢𝑢, 
{𝜂𝜂}𝑇𝑇 = {𝑢𝑢}𝑇𝑇𝑨𝑨−1.  (16) 

     In addition, by substituting eqns (15) and (16) into eqn (14), the new formulation of field 
points’ sensitivities can be obtained as  

�̇�𝑝𝑖𝑖𝑛𝑛𝑛𝑛𝑒𝑒𝑖𝑖(𝑥𝑥) = {𝜂𝜂}𝑇𝑇�𝑩𝑩�̇�𝜙 − �̇�𝑯𝑝𝑝 + �̇�𝑮𝑞𝑞� + {𝑘𝑘}𝑇𝑇 �̇�𝜙  + {�̇�𝑒}𝑇𝑇𝑞𝑞 − ��̇�𝑏�
𝑇𝑇
𝑝𝑝.  (17) 

     As we can see, eqn (16) is independent with all of the design variables. Hence, we only 
need to compute it once even if there exist a larger number of design variables. This will 
significantly improve the efficiency of sensitivity analysis, which will play a great role in the 
following optimization process. 

4  SHAPE OPTIMIZATION PROCESS 
After the sensitivity analysis by the AVM, we choose the method of moving asymptotes 
(MMA) as the optimization solver. The minimization of sound pressure on a specified 
reference plane is set as the design objective. The optimization model can be 
formulated as follows: 

𝑚𝑚𝑖𝑖𝑛𝑛:Π(𝒙𝒙) = �̅�𝑝𝑠𝑠(𝒙𝒙)𝑝𝑝𝑠𝑠(𝒙𝒙)
𝑠𝑠. 𝑡𝑡. :𝐴𝐴(𝒙𝒙) ≤ 𝐴𝐴0

 

𝑏𝑏𝑏𝑏𝑢𝑢𝑛𝑛𝑑𝑑: 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 , 𝑖𝑖 = 1,2,⋅⋅⋅,𝑛𝑛𝑑𝑑
𝑖𝑖𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑛𝑛: �Π

𝑚𝑚+1−Π𝑚𝑚

Π𝑚𝑚
� < 𝜏𝜏,  (18) 

where 𝒙𝒙 is a vector of control points’ coordinates 𝑥𝑥𝑖𝑖(𝑖𝑖 = 1,2,⋅⋅⋅,𝑛𝑛𝑑𝑑) that are set as design 
variables; Π(𝒙𝒙) is the objective function; 𝑝𝑝𝑠𝑠(𝒙𝒙) denotes the sound pressure of field points 
which located on the reference plane, and �̅�𝑝𝑠𝑠(𝒙𝒙) denotes the conjugate transpose of 𝑝𝑝𝑠𝑠(𝒙𝒙). 
𝐴𝐴0 is the initial area of structures, which is called constraint. 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 are the lower 
and upper bounds for every design variable 𝑥𝑥𝑖𝑖; 𝜏𝜏 is the given value which decide the iteration 
termination. 

5  NUMERICAL EXAMPLES 
To validate the proposed approach, some numerical examples are carried out. We consider 
an infinite rigid cylinder excited by plane wave (wave speed c = 340 m/s) as shown 
in Fig. 1. 
     Firstly we compare the IGA BEM with the conventional BEM with different Lagrange 
basis functions. As Fig. 2 shows, IGA BEM achieves a higher accuracy than the constant, 
discontinuous linear and discontinuous quadratic elements (DBE21, DBE22 and DBE33, 
respectively). Then Fig. 3 shows the correctness of the sensitivity analysis. We compare the 
two analytical methods, i.e., the DDM and AVM, with finite difference method (FDM), and 
all of them give the same results. Finally we carry out the shape optimization of a rectangle 
structure shown in Fig. 4. A unit monopole is located at the point (0,1). The thickness of the 
structure is set as 0.2 m. Seventy-seven observation points are evenly distributed on 
the reference plane. The average sound pressure at these points is used as the objective 
function, as shown in eqn (18). 
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     To demonstrate the advantage of AVM, we choose 19 design variables (from control point 
P2 to P20) as shown in Fig. 5. The lower and upper bounds of these control points’ horizontal 
coordinates are 4.9 and 5.1, respectively. The parameter 𝜏𝜏 is set as 10-4. And the constraint is 
that the structure should not go beyond the initial area. 
     For excitation frequencies 100 Hz, 400 Hz, 700 Hz and 1000 Hz are considered, and the 
optimized shapes are illustrated in Fig. 6. From the figure, it can be seen that different 
frequency produce different shape which indicates the optimized shape is strongly frequency 
dependent. Further, the optimized shape tends to be more complex as frequency increases, 
which will bring more peaks and valleys. 
 

 
 

Figure 1:  Scattering from an infinite rigid cylinder. 

 

 

Figure 2:  Comparison of the relative error of discontinued BEM and IGA BEM. 
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(a)  

 
(b)  

Figure 3:    Sound pressure sensitivities at the field point (2,0) with respect to the horizontal 
coordinate of control point P1 (1,0). (a) Real part; and (b) Imaginary part. 

 

Figure 4:  Initial rectangle structure. 

     The reduction of sound pressure level (SPL) is presented in Fig. 7. From the figure, we 
can see that the SPL values at 100Hz reduce less than those at higher frequencies, which 
means that the optimization achieves better SPL reduction at higher frequencies. This can be 
explained that the higher the frequency, the shorter the wavelength, the less the diffraction 
by structures. 
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Figure 5:  Design variables. 

 

    
(a)                                                                   (b)  

    
(c)                                                                    (d)  

Figure 6:    Shape optimization results with 19 design variables at different frequencies.  
(a) Frequency = 100Hz; (b) Frequency = 400Hz; (c) Frequency = 700Hz; and  
(d) Frequency = 1000Hz. 
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(a)                                                                   (b) 

    
(c)                                                                    (d) 

 

Figure 7:    Reduction of SPL with 19 design variables at different frequencies.  
(a) Frequency = 100 Hz; (b) Frequency = 400 Hz; (c) Frequency = 700 Hz; and  
(d) Frequency = 1000 Hz. 

6  CONCLUSIONS 
This work presents a shape optimization approach based on the IGA BEM in 2D acoustics. 
The key treatment is the use of adjoint variable method for the design sensitivity analysis. 
Numerical tests show the validity of the developed approach. Furthermore, numerical 
simulation shows that IGA BEM is able to solve acoustic problems with high accuracy, and 
the proposed sensitivity analysis method is able to calculate the sensitivity values efficiently. 
The shape optimization example shows that the optimal results are strongly frequency 
dependent. The proposed optimization approach has the potential in application for 
engineering problems. 
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