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ABSTRACT
This paper proposes a novel boundary element approach formulated on the Bézier–Bernstein basis
to yield a geometry-independent field approximation. The proposed method is geometrically based
on both computer aided design (CAD) and isogeometric analysis (IGA), but field variables are
independently approximated from the geometry. This approach allows the appropriate approximation
functions for the geometry and variable field to be chosen. We use the Bézier–Bernstein form of a
polynomial as an approximation basis to represent both geometry and field variables. The solution of the
element interpolation problem in the Bézier–Bernstein space defines generalised Lagrange interpolation
functions that are used as element shape functions. The resulting Bernstein–Vandermonde matrix related
to the Bézier–Bernstein interpolation problem is inverted using the Newton–Bernstein algorithm. The
applicability of the proposed method is demonstrated by solving the Helmholtz equation over an
unbounded region in a two-and-a-half dimensional (2.5D) domain.
Keywords: subparametric method, Bézier–Bernstein curve, Newton–Bernstein algorithm, computer-
aided design, isogeometric analysis.

1 INTRODUCTION
We present a geometry-independent field approximation of the boundary element method
(BEM). The proposed formulation shares some characteristics with the standard collocation
methods and isogeometric analysis (IGA), exploring the advantages of each method.
A similar concept was recently introduced by Atroshchenko and Bordas [1].

The geometry is represented by Bézier curves defined as a linear combination of Bernstein
basis with control points. The Bernstein basis is widely used in CAD because of its good
properties for building and modifying geometric shapes [2]. On the other hand, the use of
orthogonal basis allows simple and efficient field approximation. To define an orthogonal
basis for the field interpolation, therefore, a least-square problem in terms of Bernstein–
Vandermonde matrix is generated by the interpolation constraints whose solution is a
Lagrange interpolant relative to the Bernstein basis [3], [4]. This methodology is an efficient
and robust approach that combines the Bernstein basis for geometry representation and the
Lagrange interpolating polynomial relative to the Bernstein basis for the field approximation.

The proposed method is powerful because it includes the main characteristics of standard
BEM formulation and isogeometric analysis: (i) the geometry is exactly defined as Bézier
curves; (ii) field variables are represented at nodal points instead of control variables, which
enables easy definition of the boundary conditions; (iii) h-refinement is performed directly
on the geometry without CAD interaction, as it is performed by IGA; and (iv) p-refinement
only affects the field approximation, rather than the geometry discretisation.

In this paper, the capability of the proposed method is demonstrated for solving the
Helmholtz equation in longitudinally invariant problems. This situation is referred to as a two-
and-a-half dimensional (2.5D) problem [5], in which the three-dimensional (3D) solution is
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computed by means of a Fourier transform. The structure of the rest of the paper is as follows.
First, the Bézier–Bernstein space is briefly described and the Lagrange interpolant relative
to the Bernstein basis is derived. Next, the boundary element formulation in the Bézier–
Bernstein space is presented, after which, the proposed methodology is verified by means of
two benchmark problems and a numerical example is presented.

2 NUMERICAL MODEL
This approach is based on the Helmholtz integral equation for solving 3D interior, exterior
and scattering problems in the frequency-wavenumber domain. The pressure field for the
acoustic waveguide at point x = x(x, y, z) is computed as the superposition of 2D solutions
with different wavenumbers κz [6]:

p(x, ω) =

∫ +∞

−∞
p̃(x̃, κz, ω)e−ικzz dκz, (1)

where p̃(x̃, κz, ω) is the frequency-wavenumber representation of the sound pressure, x̃ =
x(x, y) and ι =

√
−1.

The boundary integral representation is derived from the Helmholtz equation. The
fundamental solution Ψ̃(x̃, κz, ω; x̃i) for sound pressure at receiver position x̃ due to a source
acting at x̃i is the solution to:

∇2Ψ̃(x̃, κz, ω; x̃i) + κ2Ψ̃(x̃, κz, ω; x̃i) = −δ(r), (2)

where κ = ω/cf is the problem wavenumber, cf is the sound propagation velocity, δ is the
Dirac delta function and r = ||x̃i − x̃|| is the distance from the source to the receiver. The
solution to this equation defines the fundamental solution for an unbounded region in the
frequency-wavenumber:

Ψ̃(x̃, κz, ω; x̃i) = − ι
4
H

(2)
0 (καr), (3)

where κα =
√
κ2 − κ2

z and H(2)
0 is the Hankel function.

The following sections deal with: (i) the Bézier–Bernstein space for geometry
representation, (ii) the Lagrange interpolant relative to Bernstein basis for variable field
approximation, and (iii) the boundary element formulation in the Bézier–Bernstein space.

2.1 The Bézier–Bernstein space

The Bernstein basis of degree n is defined over the interval t ∈ [0, 1] as:

Bnk (t) =

(
n

k

)
tk(1− t)n−k, k = 0, . . . , n. (4)

The change of variable to map x ∈ [a, b] to t ∈ [0, 1] allows the definition of the Bernstein
polynomial related to a continuous function f(t) as follows:

Pn(t) =
n∑
k=0

f

(
k

n

)
Bnk (t). (5)

Then, eqn (5) converges to f(t) as n goes to infinity due to the Bernstein basis being non-
negative and forming a partition unity, although the polynomial form does not interpolate
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the sample values f(k/n). The Bernstein basis has partition unity property, is defined as
non-negative and symmetric about the interval mid-point (Bnn−k(1− t) = Bkn(t)).

The application of polynomials in Bernstein form grows with the development of Bézier
curves rn(t) in computer-aided design:

rn(t) =
n∑
k=0

bkBnk (t), (6)

where bk are the control points used to approximate the geometry. A control polygon is
obtained by connecting the control points and this is used to modify the curve geometry. The
de Casteljau algorithm is often used for evaluating and splitting a Bézier curve rn(t) at a
given point t [2].

Although the de Casteljau algorithm allows an easy evaluation of a Bézier curve, it
is computationally expensive. An efficient curve computation is achieved using the polar
form (or blossom) of a Bézier curve rn(t) [7], which defines a multi-affine transformation
satisfying:

bk = R(0, . . . , 0︸ ︷︷ ︸
n−k

, 1, . . . , 1︸ ︷︷ ︸
k

), (7)

where R(t1, . . . , tn) is computed as:

R(t1, . . . , tn) =
∑
I∩J=∅

I∪J={1,2,...,n}

∏
i∈I

(1− ti)
∏
j∈J

tjb|J|. (8)

Thus, a polynomial in Bernstein form can be formulated in polar form substituting eqn (7)
into eqn (6) as follows:

rn(t) =
n∑
k=0

R(0, . . . , 0︸ ︷︷ ︸
n−k

, 1, . . . , 1︸ ︷︷ ︸
k

)Bnk (t) = R(t, . . . , t). (9)

The polar form of a Bézier curve rn(t) of degree n defines a multi-affine polynomial
R(t1, . . . , tn) with n variables that satisfy rn(t) = R(t, . . . , t).

Cubic Bézier approximations are widely used to represent smooth patches in CAD. More
complex shapes would be defined by either increasing the curve order or using a piecewise
Bézier curve. Fig. 1 shows a third-order Bézier patch and its related control points represented
in polar form.

R(0, 0, 0)

R(0, 0, 1)

R(0, 1, 1)

R(1, 1, 1)

R(0, 0, t)

R(0, t, 1)

R(t, 1, 1)

R(0, t, t)
R(t, t, 1)

R(t, t, t)

Figure 1: Third-order Bézier patch.
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The geometry approximation presented in this section is used to formulate the BEM in
the Bézier–Bernstein space. The boundary geometry is defined by patches with an arbitrary
approximation degree, that depends on the geometry shape complexity. Then, each patch is
subdivided into elements according to h-refinement.

2.2 Field approximation

The Bézier–Bernstein space allows the approximation of a curve geometry through control
points. Moreover, the element shape function can be derived from the Lagrange interpolant
relative to the Bernstein basis presented in the previous section. The Lagrange interpolant
relative to the Bernstein basis has become useful for high-order element development [12].
Although a polynomial in Bernstein form satisfies Pn(0) = f(0) and Pn(1) = f(1), these
properties do not remain valid at internal element points as has been stated. Therefore, it is
necessary to properly modify the control points bk to ensure the following condition:

Pn(xi) =
n∑
k=0

bkB
n
k (xi) = f(xi). (10)

This condition is commonly expressed as a linear system of equations through the Bernstein–
Vandermonde matrixAij = Bji (xi), for i, j = 0, . . . , n. The control points b = [b0, . . . , bn]T

are given by the solution of Ab = f, where the vector f = [f(x0), . . . , f(xn)]T collects the
interpolation data.

In this work, we have used the Newton–Bernstein algorithm proposed by Ainsworth and
Sánchez [11] to compute the control points. The Newton–Bernstein algorithm [11] starts with
the Newton form of the interpolant Pn at nodes xi:

Pk(x) =

k∑
i=0

f [x0, . . . , xk]wi(x), k = 0, . . . , n, (11)

where f [x0, . . . , xk] is the divided difference defined by the following recursive formula:

f [xj , . . . , xk] =
f [xj+1, . . . , xk]− f [xj , . . . , xk−1]

xk − xj
, k = j + 1, . . . , n; j = 0, . . . , n.

(12)
Thus, the following expressions for control points wk and bk, for k = 0, . . . , n are defined:

wk(xj) =
j

k
wk−1(xj−1)(1− xk−1)− k − j

k
wk−1(xj)xk−1, (13)

bk(xj) =
j

k
bk−1(xj−1) +

k − j
k

bk−1(xj) + wk(xj)f [x0, . . . , xk], (14)

and for j = 0, . . . , k the latter expressions are w0(x0) = 1, b0(x0) = f [x0], w−1(xk−1) =
b−1(xk−1) = 0 and wk(xk−1) = bk(xk−1) = 0.

The Lagrange polynomial Pn of order n defined through the Bernstein basis gives
n+ 1 interpolation functions φj computed after imposing the constrains P jn(xk) = φj(xk) =
δ(xk − xj), for j, k = 0, . . . , n. Then, b becomes a matrix of unknown control points and
f = I is the identity matrix. The related interpolation functions are computed for a given point
x as [φ1(x), . . . , φj(x), . . . , φn+1(x)]T = bA(x). The evaluation of the shape functions also
benefits from the computational advantages of using the polar form given in the previous
section.
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2.3 Boundary element formulation

Since the Bézier–Bernstein basis allowed the independent geometry and field variable
approximation, the formulation of the BEM in Bézier–Bernstein space is quite
straightforward, as in a classical formulation. This section describes the boundary element
formulation for potential problems in acoustics [13]. The integral representation of the sound
pressure in the frequency-wavenumber domain for a point x̃i located at the arbitrary boundary
Γ can be written as:

ci(x̃i)p̃i(x̃i, κz, ω)

= −
∫

Σ

(
ιρωṽi(x̃i, κz, ω)Ψ̃(x̃, κz, ω; x̃i) + p̃i(x̃i, κz, ω)

∂Ψ̃(x̃, κz, ω; x̃i)
∂n

)
dΣ, (15)

where p̃(x̃i, κz, ω) and ṽ(x̃i, κz, ω) are the sound pressure and the particle normal velocity
at the cross section Σ of the boundary Γ, respectively. Ψ̃(x̃, κz, ω; x̃i) is the solution to the
Helmholtz equation at point x̃ due to a point source located at x̃i (eqn (3)). The integral-free
term ci(x̃i) depends only on the boundary geometry at the collocation point x̃i.

The boundary is discretised into N elements with Σ =
⋃N
j=1 Σj , leading to a boundary

approximation of the element field variables using the interpolation shape function φ of
order p:

p+1∑
i=1

φip̃i = φp̃e, (16)

p+1∑
i=1

φiṽi = φṽe. (17)

The proposed method employs the Lagrange interpolants relative to the Bernstein basis
described in Section 2.2 as approximation shape functions. Thus, eqn (15) is written as:

cip̃i = −
Q∑
j=1

[
ιρω

{∫
Σj

φjΨ̃ dΣ

}
ṽj +

{∫
Σj

φj
∂Ψ̃

∂n
dΣ

}
p̃j

]
, (18)

where Q is the total number of nodes at the boundary and Σj(x̃) stands for the elements
which contain the node j. The following integrals are defined for each collocation point x̃i
and integration element Σj :

hji (x̃, κz, ω; x̃i) =

∫
Σj

φj
∂Ψ̃

∂n
dΣ, (19)

gji (x̃, κz, ω; x̃i) =

∫
Σj

φjΨ̃ dΣ. (20)

Eqns (19) and (20) define the element matrices as in standard BEM formulation. Now, the
Bézier–Bernstein space is used to describe the exact element geometry as Σj(x̃) = rjn(t).
Hence, the later integrals along a boundary element Σj are rewritten in the univariate basis
t ∈ [0, 1] as: ∫

Σj

f̃(x̃, κz, ω; x̃i) dΣ =

∫ 1

0

f(x̃(t), κz, ω; x̃i)
∣∣∣∣ ddtrjn(t)

∣∣∣∣ dt, (21)
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where f̃(x̃, κz, ω; x̃i) represents the kernels in eqns (19) and (20). Thus, eqn (21) is
transformed into a symmetric integration interval ξ ∈ [−1, 1] to employ a Gauss–Legendre
quadrature as:∫

Σj

f̃(x̃, κz, ω; x̃i) dΣ =

∫ 1

−1

f̃(x̃(ξ), κz, ω; x̃i)
∣∣∣∣ ddtrjn(t)

∣∣∣∣ dt(ξ)dξ
dξ. (22)

The relation 2t = ξ + 1 defines the Jacobian of the transformation dt/dξ = 1/2.
Finally, eqns (19) and (20) are expressed as follows:

hji (x̃, κz, ω; x̃i) =
1

2

∫ 1

−1

φj
∂Ψ̃

∂n

∣∣∣∣ ddtrjn(t)

∣∣∣∣ dξ, (23)

gji (x̃, κz, ω; x̃i) =
1

2

∫ 1

−1

φjΨ̃

∣∣∣∣ ddtrjn(t)

∣∣∣∣ dξ. (24)

The system of equations for all the boundary elements becomes:

H̃(x̃, κz, ω; x̃i)p̃(x̃, κz, ω) = G̃(x̃, κz, ω; x̃i)ṽ(x̃, κz, ω), (25)

where H̃(x̃, κz, ω; x̃i) and G̃(x̃, κz, ω; x̃i) are the fully non-symmetrical boundary element
system matrices, and p̃(x̃, κz, ω) and ṽ(x̃, κz, ω) are the sound pressure and particle normal
velocity at the boundary Σ, respectively.

The boundary integrals are computed using a standard Gauss–Legendre quadrature with
4(p+ 1) integration points whenever the collocation point is sufficiently distant from the
integration element. Otherwise, the solution of singular or weakly singular integrals is
numerically computed using a smoothing transformation by means of a Gauss–Legendre
quadrature [14]. Fig. 2 shows a scheme for the treatment of singular and weakly singular
integrals. This figure represents a collocation point x̃i and an integration element Σj . The
projection point t(x̃i) is found from x̃i as the point that minimizes the distance r(x̃i) to the
integration element. Obviously, if the collocation point belongs to the integration element,
then t(x̃i) coincides with the coordinate of this node. Once the point t(x̃i) has been identified,
the element integration defined by eqn (21) becomes:∫

Σj

f̃(x̃, κz, ω; x̃i) dΣ

=

∫ t(̃xi)

0

f(x̃(t), κz, ω; x̃i)
∣∣∣∣ ddtrjn(t)

∣∣∣∣ dt+

∫ 1

t(̃xi)
f(x̃(t), κz, ω; x̃i)

∣∣∣∣ ddtrjn(t)

∣∣∣∣ dt, (26)

where the integration path is subdivided into two intervals according to t(x̃i). These integrals
are numerically solved by a smoothing transformation of the form x̃ = ϕl,r(s) [14]:

ϕl,r(s) =
(α+ β − 1)!

(α− 1)!(β − 1)!

∫ s

0

uα−1(1− u)β−1 du, s ∈ [0, 1], (27)

where

Ξα,β(s) =

∫ s

0

uα−1(1− u)β−1 du (28)

is computed using the recurrence expression:

Ξα,β(s) =
1

α+ β − 1

[
−sα−1(1− s)β + (α− 1)Ξα−1,β(s)

]
, α ≥ 2, β ≥ 1 (29)
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x̃i

t(x̃i)

Σj

t

r(x̃i)

ϕr(s)

ϕl(s)

Figure 2: Treatment of singular and weakly singular integral.

with the initial value Ξ1,1(s) = s. Accurate results for singular integrals are given in the next
section, setting α = 3 and β = 1, and using a number of integration points 10(p+ 1).

Therefore, eqn (26) becomes:∫
Σj

f̃(x̃, κz, ω; x̃i) dΣ = −
∫ 1

0

f(x̃(ϕl(s)), κz, ω; x̃i)
∣∣∣∣ ddtrjn(t)

∣∣∣∣ dtdϕl ddsϕl(s) ds
+

∫ 1

0

f(x̃(ϕr(s)), κz, ω; x̃i)
∣∣∣∣ ddtrjn(t)

∣∣∣∣ dtdϕr ddsϕr(s) ds, (30)

where dt/dϕl = −t(x̃i) and dt/dϕr = 1− t(x̃i).
The integration interval is then transformed to ξ ∈ [−1, 1] to employ a Gauss–Legendre

quadrature as described for regular integrals. The two integrals are reduced to only one
integral if the projection point t(x̃i) lies at the element endpoints.

We chose a maximum radius r∗ between the collocation point and the integration element
for the identification of singular integrals. Otherwise, the collocation point is sufficiently
distant from the integration element and the resulting integrals are regular. The asymptotic
behaviour of the fundamental solution is accounted for by selecting the critical radius r∗

when the integral becomes singular [15]:

lim
r→0

Ψ̃ =
ι

4
+

1

2π
log(καr), (31)

lim
r→0

∂Ψ̃

∂n
=

1

2πr

∂r

∂n
. (32)

3 NUMERICAL EXAMPLE
In this section, the capability of the proposed method is shown with a numerical example. The
problem solved herein models the three-dimensional wave propagation in a fluid channel with
a fixed scatterer. The fluid channel is bounded by two reflection planes that were assumed to
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be rigid with null particle normal velocity. The total channel height was H = 6 m and fluid
air properties were taken with sound wave propagation velocity cf = 340 m/s and density
ρ = 1.225 kg/m3.

A modified Green’s function for the fluid channel was used to limit the discretisation to
the scatterer boundary. The method of images was used to construct the modified Green’s
function [15]. The scatterer and the fluid channel were centred at the origin. The fluid
channel and the scatterer were excited by a point source acting at location x = (−3, 0, 0) m
with κ = 20 rad/m. The source was defined by the modified Green’s function. The problem
solution was computed in the frequency-wavenumber domain for a longitudinal wavenumber
varying over a range from zero to κz = 2κ in 128 equidistant steps. The pressure field was
evaluated over a grid of receivers with a density of six points per wavelength.

Two geometries were considered: (i) a cylindrical scatterer and (ii) the complex shaped
scatterer represented in Fig. 3(a) directly imported from a CAD model. The geometry of the
second example was defined by twelve C1 cubic patches. Problem discretisation was given
by κh = 6 and dλ = 6, which leads to an element order p = 6. The element nodes were
located at the Chebyshev points of the second kind. Once the boundary discretisation had
been defined, the geometry patches were subdivided as shown in Fig. 3(b). The cylindrical
scatterer was discretised following a similar procedure.

Fig. 4 shows the incident wavefield and the scattered wave. The representation is limited
to a half model, according to the problem symmetry. The incident pressure field shows a
spherical distribution that was gradually lost as the distance to the source point increased
due to channel wave refraction (Fig. 4(a)). The amplitude decreased with the distance to
the excitation point, according to the radiation condition. The pattern of the incident wave
changed under the effect of the scatterers. A complex pattern was found, caused by waves
reflected from both the channel borders and the scatterer boundary. A shadow region was
found behind the scatterers where pressure amplitude was considerably lower.

This example has shown that the proposed method is, therefore, a useful tool for studying
boundary problems with exact CAD geometry. An independent geometry and variable field
approximation allowed efficient modelling that took both the complexity of the boundary
shape and the studied wavenumber into account. In this case, it was enough to use cubic

-1.5 -1 -0.5 0 0.5 1 1.5
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-1.5
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-0.5
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1
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(a)

-1.5 -1 -0.5 0 0.5 1 1.5
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-1.5
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0

0.5

1

1.5

y
[m
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(b)

Figure 3: (a) Complex geometry imported from CAD model; (b) Related discretisation for
κh = 6. Control points and their related control polygons are represented by grey
circles and grey lines.
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(a)

(b)

Figure 4: Real part of (a) incident wavefield, and the scattered wavefield by (b) a cylindrical
cavity, and (c) a complex shape boundary.
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curves for the geometry approximation, while it was necessary to use six order elements for
the variable field.

4 CONCLUSIONS
This paper has proposed a novel formulation of the BEM to consider exact CAD geometry.
The boundary geometry is described in the Bézier–Bernstein space which is commonly used
in computer-aided design. Boundary elements are defined by the subdivision of Bézier curves
according to an h-refinement strategy. The element geometry is evaluated and subdivided
using the de Casteljau algorithm and the polar form of Bernstein polynomials. Geometric
operations are easily performed without CAD interaction which entails a great flexibility for
h-refinement.

The field variables are approximated independently of the geometry representation.
Therefore, the proposed method is arbitrarily defined as subparametric, isoparametric
or superparametric, depending on the problem properties and boundary geometry. The
approximation of field variables has been generalised considering different shape functions
families defined from node locations and element degree, using the Newton–Bernstein
algorithm.

The boundary element integrals are solved according to distance from collocation points
and the integration element. The asymptotic behaviour of the fundamental solution has
given a critical radius below which the element integrals become singular. In this case,
singular integrals have been numerically integrated with a polynomial transformation of the
integration domain.

In particular, this work has been used to solve the Helmholtz equation in longitudinally
invariant domains, but it is also possible to apply it in different two-dimensional or 2.5D
physical problems, using an appropriate fundamental solution for the boundary element
method.
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interpolant in arbitrary dimension. SIAM Journal on Scientific Computing, 38(3),
pp. A1682–A1700, 2016.

[12] Farouki, R.T., Goodman, T.N.T. & Sauer, T., Construction of orthogonal bases for
polynomials in Bernstein form on triangular and simplex domains. Computer Aided
Geometric Design, 20(4), pp. 209–230, 2003.

[13] Romero, A., Galvı́n, P., António, J., Domı́nguez, J. & Tadeu, A., Modelling of acoustic
and elastic wave propagation from underground structures using a 2.5D BEM-FEM
approach. Engineering Analysis with Boundary Elements, 76, pp. 26–39, 2017.

[14] Monegato, G. & Scuderi, L., Numerical integration of functions with boundary
singularities. Journal of Computational and Applied Mathematics, 112(1–2), pp. 201–
214, 1999.

[15] Wu, T., Boundary Element Acoustics Fundamentals and Computer Codes, Advances in
Boundary Elements, WIT Press, 2000.

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLII  23




