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ABSTRACT 
This paper introduces an innovative technique that integrates a genetic algorithm based digital image 
correlation with laser speckle photography (LSP) for the measurement of surface displacements in 
structures. The images (before and after deformation) are digitized using a digital camera, and the 
grayscale intensity matrices are read and processed by Matlab image processing toolbox. The two 
matrices of the images are then inputted into an iterative program based on the genetic algorithm that 
utilizes an advanced cross correlation technique to determine the surface displacements. Additionally, 
the strains are computed by radial basis function (RBF) differentiation. The computed displacements 
are compared with simulated results obtained by finite element analysis. Close agreement between the 
two results proved the validity of the developed non-contact technique for accurately measuring 
surface displacements. The experimentally measured displacements can be directly used in an inverse 
technique to detect and characterize subsurface cavities in structures. 
Keywords:  laser speckle pattern, RBF interpolation, genetic algorithm, surface strain. 

1  INTRODUCTION 
Optical methods such as holographic interferometry, shearography, laser speckle 
interferometry and Moiré were developed for measuring surface displacement and 
deformation. Some of these methods have been combined with the latest computer 
technology and imaging systems and developed into commercial scientific instruments. In 
practice, however, this equipment is expensive and requires a stable environment as well as 
laborious data reduction processes. References [1]–[4] are resourceful in literature and 
description of the laser speckle interferometry and photography techniques. Fraley et al. [5] 
proposed the use of the two-dimensional correlation method to measure the local 
displacement with laser speckle patterns. This approach has been applied in several special 
cases to determine the local displacement components due to uniform translation in pixel 
resolution. 
     A more straightforward technique using digital image correlation method was developed 
in the early 1980s for measuring surface displacements and deformation [6]. The method 
required a digital imaging system to optically record the images of the surface before and 
after deformation. The gray level functions of the images are then compared using 
advanced image correlation and processing algorithms in order to determine the 
displacement and deformation gradients. Pilch et al. [7] and Chu et al. [8] developed a new 
optimizing algorithm based on evolutionary techniques for digital image correlation. The 
optimizing process was tested for a rubber specimen under tensile load using speckle 
formed by spray painting the specimen surface.  
     In this paper, we developed an image domain decomposition approach to laser speckle 
photography (LSP) as applied to the vision-based method of deformation measurements. 
Here, a genetic algorithm is utilized to determine the motion of the center of pixel 
groupings by maximizing a simplified cross correlation expression. The whole specimen 
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deformation is subsequently reconstructed by means of radial basis function interpolation 
(RBF), and the strains are found by RBF differentiation.  

2  THE DOMAIN DECOMPOSITION LASER SPECKLE TECHNIQUE 
The application of the LSP technique involves the use of speckle pattern formed on the 
surface of a specimen impinged by a coherent source of light such as a laser beam. The 
procedure entails the application of a random speckle pattern to a surface of interest, then 
capturing a digital image of the surface, followed by capturing an image of the specimen 
after the surface has been displaced or deformed and then comparing the two images to 
compute the displacement for the surface. A schematic of the experimental setup is shown 
in Fig. 1. 
     Suppose a speckle pattern is created on a surface and an image is captured, as depicted 
in Fig. 2(a). A point of interest in this image undergoes motion in the second image (Fig. 
2(b)) depending upon the loading conditions. A region (subset) around the point of interest 
may be selected. This subset may undergo a displacement and strain such that the new 
location and shape of the subset is depicted by the parallelogram in Fig. 2(b). The center of 
the parallelogram is the point of interest. 
 

 

Figure 1:  Schematic of the experimental setup. 

  

Figure 2:  (a) Undeformed image; (b) Actual deformed image. 
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Figure 3:  Model utilized in this study: motion of the center of a grouping of pixels. 

     The method for comparing the two subsets (to determine the displacement vector u , see 
Fig. 3) is commonly given by the cross correlation coefficient, C: 
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where:   M = subset in the undeformed image; 
  M* = subset in the deformed image; 
 f(x,y) = grey level of speckle at a point (pixel). 
     The values of u and v which maximize C are the local deformation (displacement 
components) for the selected subset. The main objective of the image correlation process is 
to find these values for the subset under investigation, and then repeat it for all subsets in a 
given region to find the whole field deformation profile. In practice, the above is then 
implemented as: 
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     Generally, the above correlation should be at least augmented by first derivatives to 
account for actual deformations not just translation. However, we since adopt a domain 
decomposition approach to the problem, the deforming regions that are followed are 
significantly reduced in size with each subdomain viewed with the full resolution of the 
camera as illustrated in Fig. 4. For each grouping of pixels, the values of u and v that 
maximize the correlation in eqn (1) are determined by a genetic algorithm (GA). The image 
of the whole specimen is then reconstructed via Radial Basis function (RBF) interpolation 
of the motion of each pixel grouping. 
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Figure 4:  Domain decomposition of the image. 

3  THE GENETIC ALGORITHM 
The genetic algorithm (GA) optimization process begins by setting up a random set of 
possible solutions, called the population, with a fixed initial size or number of individuals. 
Each individual is defined by optimization variables and is represented as a bit string or a 
chromosome. An objective function, in our case Z(u,v)=1/C(u,v), is evaluated for every 
individual in the current population defining their fitness or their probability of survival. At 
each of the iterations of the GA, the processes of selection, cross-over, and mutation 
operators are used to update the population of designs. A selection operator is first applied 
to the population in order to determine and select the individuals that are going to pass 
information in a mating process with the rest of the individuals in the population. This 
process allows the genetic information contained in the best individuals to be combined to 
form offspring. Additionally, a mutation operator randomly affects the information 
obtained by the mating of individuals. This is a crucial step for continuous improvement. 
     In nature, the properties of an organism are described by a string of genes in the 
chromosomes. Therefore, if one is trying to simulate nature using computers one must 
encode the design variable in a convenient way. We adopt a haploid model using a binary 
vector to model a single chromosome. The length of the vector is dictated by the number of 
design variables and the required precision of each design variable. Each design variable 
has to be bounded with a minimum and a maximum value and in the process the precision 
of the variable is determined. The number of divisions used in the discretization has to be 
integer power of two. This procedure allows an easy mapping from real numbers to binary 
strings and vice versa. The haploid GAs place all design variables into one binary string. In 
turn, each individual is equipped with a given set of design variables to which corresponds 
a value of the objective function. This value is the measure of “fitness” of the individual 
design. In GAs, poorly fit designs are not discarded; rather they are kept, as in nature, to 
provide genetic diversity in the evolution of the population. This genetic diversity is 
required to provide forward movement of the population during the mating, cross-over, and 
mutation processes which characterize the GA (see Goldberg [9]). 
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     After initializing the population with random values the fitness of each individual is 
calculated by computing the value of the objective function. Then, the probability of being 
a selected individual for mating is calculated as the ratio between the value of the fitness 
function of each individual and the sum of all fitness function values. This is given by: 
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where vi is ith member of the population, and Fitness(vi) is the measure of the fitness of that 
member under its currently evolved parameter set configuration. A weighted roulette wheel 
is generated, where each member of the current population is assigned a portion of the 
wheel in proportion to its probability of selection. The wheel is spun as many times as there 
are individuals in the population to select which members mate. Obviously, some 
individuals could be selected more than once, where the best chromosomes get more 
copies, the average stay even, and the worst die off. Once selection has been applied, 
crossover and mutation occur to the resulting offspring. These operations further expand 
genetic diversity in the population. All other probabilities referred to in the description of 
the GA adopted in this paper are computed in an analogous fashion as the selection 
probability. 
     Following selection, crossover and mutation the new population is ready for its next 
evolution until the convergence criteria “fitness” is reached. It is the very nature of the 
binary representation of the design variables of the objective function and the random 
search process which provide yet another but implicit degree of regularization in this 
optimization process. The sensitivity of the objective function can be tuned depending on 
the size of each element of the chromosome. Thus, low bit representation is insensitive to 
large variations in input (regularized but may lead to poor solution due to low resolution), 
while high bit representation is sensitive to large variations in input (not regularized and 
therefore may lead to poor solution as well). There is a range of bit size which produces a 
regularized and sensitive response leading to stable solutions.  
     In the GA we used to generate the results presented in this paper, the following 
parameters are chosen: population size of individuals/generation, with a string of ten bits to 
define each parameter within each individual, two offspring per mating, a 1% probability of 
mutation, and a 70% probability of crossover. The population is not allowed to grow. This 
combination of parameters has been proven to yield efficient and accurate optimization 
results for different studies carried out by the authors [10]. 

4  RBF INTERPOLATION AND STRAIN COMPUTATION 
The radial basis function (RBF) interpolation begins by defining a set of data centers, xc, 
comprised of points distributed throughout the domain and the boundary which need not be 
uniformly distributed. These data centers serve as collocation points for the localized 
expansion of the variables of interest in the domain and on the boundary. 
     A localized expansion over a group or topology of influence points, NF, around each 
data center is sought such that: 
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The variable   will take on the values of u or v depending on the application, x denotes 
the x–y pair of coordinates of a general point, αj denote the unknown expansion 
coefficients, χj are the RBF expansion functions, NP is the number of additional polynomial 
functions, Pj(x), added to the expansion to guarantee that constant and linear fields can be 
retrieved exactly. The RBF we utilize belong to the family of Hardy Multiquadrics [11]: 

3
2 2 2( ) ( )

n

j jx r x c


    ,                                                (5) 

where, n is a positive exponent, c is a shape parameter, and rj(x) is the Euclidean distance 
from x to xi. We utilize n = 1, a choice that yields the well-established inverse 
Multiquadrics, whose behavior has been extensively studied in the literature [12], [13]. The 
shape parameter, c, controls the behavior of the interpolation and the accuracy of its 
derivative. For a specific expansion over a set of data centers, the larger the shape 
parameter, the smoother is the computed derivative field. However, the magnitude of the 
shape parameter cannot be increased without bound as the expansion functions become 
flatter and, hence, the collocation coefficient matrix becomes ill-conditioned. For this 
reason, a simple optimization search is employed to determine every value for the shape 
parameter used in every expansion over the different local topologies that cover the entire 
field. An initial guess for c is based on the ratio of the average distance between data 
centers in a topology to the number of points in the topology. 
     The localized expansion approach [14], [15] reduces the computational burden global 
RBF interpolation methods by expanding the field variable locally around each data center 
to interpolation the function and to obtain its derivatives. This approach yields the 
generation of a different but small interpolation matrix for each data center rather than the 
large and fully-populated global interpolation matrix of the standard global interpolation 
methods. 
     The selection of an influence region or localized topology of expansion around each data 
center is easily accomplished by a circular (spherical in 3D) search around each data center. 
The search is automated to guarantee that a minimum number of points will be included 
and additional criteria, such as including all directions around internal data centers, are met. 
The collocation of the field variable at the points within the localized topology, leads to the 
following in matrix-vector form: 

1{ } [ ]{ } { } [ ] { }C C      ,                                        (6) 

where the matrix [C] and the vector { } are composed as: 
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and, evaluating eqn (4) for field variable at the data center xc leads to the matrix form: 
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c c cx x C x      .                                  (8) 
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Figure 5:  Differentiation stencil and local topology for RBF-FD. 

     To compute variable derivatives at the data center there are two possibilities: (1) RBF 
native differentiation (RBF-ND) we apply any linear differential operator, for example, 

/xL x   , over the localized expansion equation, or (2) RBF-enhanced finite difference 

(RBF-FD) where we utilize the RBF to interpolate the field variable at locations on a finite 
difference stencil (virtual points) centered at the data center, and subsequently apply a 
standard finite difference on that stencil. In the first case of RBF-ND, the approach leads to: 
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where xc is the data center of the topology. Thus, in matrix-vector form: 
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where the vector {Lc} is composed by: 
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     In the second case of RBF-FD, illustrated for the second order central difference 
evaluation of the first derivative at the data center xp, the RBF is utilized to generate the 
values for the field variable at the virtual finite difference stencil locations a and b. Local 
topologies are constructed for each virtual data center and these do not include the virtual 
points themselves, see Fig. 5. Eqn (6) is applied to the set of points surrounding the virtual 
points a and b, leading to: 

   ( ) ( )
T

a a ax x   ,                                               (12) 
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   ( ) ( )
T

b b bx x   ,                                               (13) 

where  ( )ax is the interpolating weight vector and  a  is the nodal value vector 

associated with virtual point a, and  ( )bx is the interpolating weight vector and  b is 

the nodal value vector associated with virtual point b. 
 
     Therefore, substituting these virtual point expressions into a second order accurate 
central difference of the first x-derivative at the data center xc leads to: 
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     This is readily extended for any other derivative of interest. Therefore, using either 
method, RBF-ND or RBF-FD, the evaluation of the field variable derivatives at every one 
of the data centers xc is provided by a simple inner product of two small vectors: {Lc} 
which can be pre-built and stored and { }  which is the field variable values at the 

surrounding RBF points within the topology of the data center xc. In this paper, we compute 
all derivatives utilizing the RBF-FD. With the derivatives of the displacements now readily 
available, the strains can be computed as: 
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x y y x
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5  EXPERIMENTAL PROCEDURE AND DATA COLLECTION 
A Plexiglas test specimen of length = 250 mm, width = 168 mm, and thickness = 4.8 mm, 
with two circular holes was fabricated and all the optical instruments were clamped firmly 
onto an optical table (see Fig. 6). The translation stage holding the spatial filter was 
adjusted till a clean divergent laser beam is obtained to illuminate the test specimen. The 
test specimen was then clamped onto the loading frame and a tensile load of 500 lb was 
applied. An image of the specimen (covered by laser speckles) in the deformed state was 
captured by a digital camera. Subsequently the specimen was unloaded to 100 lb and 
another digital image was captured. 
 

 

Figure 6:  Photograph of the experimental setup and details of the test specimen. 
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     The digital camera at highest resolution and full zoom can give resolution of 2832 x 
2128 pixels. Once the digital images are cropped to size, the resolution for the images was 
calculated to be 0.125 mm/pixel. Fig. 7 depicts the gray level distribution. Preliminary 
finite element analysis indicated that the maximum deformation would be in the order of 
0.3 mm, or in terms of pixels the maximum expected deformation would be less than 3 
pixels. Preliminary runs of the image correlation using the genetic algorithm proved that 
such low-resolution images gave poor output for surface displacements. 
     To overcome the low-resolution problem it was then decided to subdivide the entire test 
specimen into blocks and capture the image of each block separately at highest resolution 
and full zoom. As shown in Fig. 8(a) and (b) the specimen surface was divided into an array 
of 20 blocks using a soft-tipped pen and each block was identified by its own numbering 
scheme. 
     The camera was mounted on a translation stage firmly clamped onto the isolation mount 
and placed 250 mm away from the test specimen. The camera was set at the highest 
resolution and zoomed to focus on the first block of the specimen. The specimen was  
 

 

Figure 7:  Grey level distribution of specimen covered by laser speckles. 

   

Figure 8:  (a) Subdivided specimen; and (b) Numbering scheme. 
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loaded to 500 lb; an image captured and subsequently the specimen was unloaded to 100 lb 
and another image captured. The resolution obtained by this technique was found to be 
0.027 mm/pixel. This procedure was repeated for the twenty blocks of the specimen. The 
image intensity matrix for each set was correlated using the genetic algorithm-based 
correlation technique. The input parameters of the algorithm were continuously tuned or 
calibrated to give a deformation gradient similar to the gradient obtained from preliminary 
finite element analysis (mesh shown in Fig. 9). 

6  RESULTS AND DISCUSSIONS 
The results from each block were then assembled and the final deformation gradient was 
obtained and shown in Fig. 10. 
 
 

 

Figure 9:  Finite element model of the test specimen. 

  

Figure 10:    Displacement distribution of displacement components u and v from the 
genetic algorithm. 
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     Referring to Fig. 10, it is evident that the information at the interface between the 
different blocks is yet unknown and the elastostatic compatibility equations are not 
satisfied. This is achieved by computationally integrating the various blocks together by 
averaging the intensity of the nodes at the edges between neighboring blocks along the 
median coordinates between the edges, using the RBF interpolation technique. This resulted 
in a displacement distribution of the overall specimen as a single entity and not a 
compilation of several entities. Figs 11 and 12 exhibit the deformation distribution plots 
magnified by a factor of 10 as compared to the solution obtained from preliminary finite 
element analysis. 
     The strain components , andx y xy    were computed by the RBF-FD differentiation 

scheme and their distribution is shown in Fig. 13. 
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Figure 11:    Displacement distribution of u at 10X Magnification for the integrated genetic 
algorithm data as compared to solution obtained from FEA. 
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Figure 12:    Displacement distribution of v at 10X Magnification for the integrated genetic 
algorithm data as compared to solution obtained from FEA. 
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Figure 13:  Strains components , andx y xy    distribution obtained by RBF interpolation. 

7  CONCLUSIONS 
The GA-based digital image correlation technique is successfully applied to measure 
surface displacements in structures using laser speckle photography. With readily available 
high-resolution digital cameras, the sensitivity of this technique can be significantly 
increased. A major advantage of this technique is its ability to subdivide the domain and 
hence use the full camera resolution on a small region. In addition, the GA was used to 
compute only the displacement components (two variables), which makes the technique 
more efficient. This is complemented by the RBF implementation to accurately compute 
the strain components. The technique is completely non-contact and highly accurate even 
for very small displacements. 
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