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ABSTRACT
We apply a radial basis function (RBF) collocation method for the approximation of functions in two
dimensions. The solution is approximated by a linear combination of radial basis functions. The issue of
determining the optimal value of the shape parameter is tackled by including it in the unknowns along
with the coefficients of the RBFs in the approximation. The resulting nonlinear system of equations is
solved by directly applying a standard non-linear solver. The results of some numerical experiments are
presented and analysed.
Keywords: radial basis functions, function approximation, collocation.

1 INTRODUCTION
In the last few decades radial basis functions (RBFs) have been used extensively for solving
problems in various fields of engineering and scientific computing. Initially, RBF methods
were used primarily for multivariate approximation [2], [5], the theoretical foundations of
which may be found in [11], [16]. RBF approximation methods are particularly attractive
due to their accuracy, flexibility and ability to handle scattered data in complex domains. In
addition, they are meshless and very easy to implement. However, they suffer from a number
of unfavourable issues. One such issue is the illconditioning of the global matrix which
means that as the number of collocation points increases, the condition number of the matrix
increases and, eventually, the accuracy of the solution suffers. Another unresolved issue in
RBF approximation is the determination of the optimal value of the shape parameter present
in many RBFs, as will be explained later. In the past, various techniques have been proposed
for the determination of an appropriate value of the shape parameter [4], [9], [10], [18]. More
recently, RBF methods have also become popular for the solution of boundary and initial
value problems for partial differential equations, in particular due to the method proposed
by Kansa [14], which has become known as the Kansa method. The same advantages and
disadvantages as those mentioned for RBF approximation still hold for the Kansa method.
A recent review of Kansa RBF methods for the numerical solution of partial differential
equations may be found in [3].

In the current work we attempt to find a way of resolving the shape parameter issue when
RBF methods are used to approximate functions in two dimensional domains. In particular,
we use an idea developed in [12], [13] for applications of the Kansa-RBF method [14] to
nonlinear boundary value problems. In the RBF approximation of the function in question
we let the shape parameter be one of the unknowns. Since the shape parameter appears
nonlinearly in the RBF expansion, the collocation of the approximation at various points in
the domain now yields a system of nonlinear equations. This system is then solved using
standard software for the solution of nonlinear systems which yields, in addition to the
unknown coefficients in the RBF expansion, a value for the shape parameter. It is shown,
in several examples, that, provided the initial guess is taken within a certain range, this value
is close to the optimal shape parameter value. The results of further numerical experiments
may be found in [20].

The paper is organized as follows. In Section 2 we present the problem and describe
the RBF formulation. The details regarding the solution of the resulting nonlinear system are

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

doi:10.2495/BE410141

Boundary Elements and other Mesh Reduction Methods XLI  153



presented in Section 3. In Section 4 we present the results of two numerical examples. Finally,
some concluding remarks and ideas for future work are provided in Section 5.

2 RADIAL BASIS FUNCTION INTERPOLATION
2.1 The problem

We consider the interpolation of a bivariate function f : Ω→ R, where Ω ⊂ R2, from a set
of sample values {f(xm, ym)}Mm=1 on a discrete set X = {(xm, ym)}Mm=1 ⊂ Ω.

2.2 RBF approximation

We approximate f by a linear combination of radial basis functions (RBFs)

fN(x, y) =
N∑
n=1

anφn(x, y), (x, y) ∈ Ω. (1)

The RBFs φ(x, y), n = 1, . . . , N can be expressed in the form

φn(x, y) = Φ(rn), r2
n = (x− xn)2 + (y − yn)2. (2)

Thus each RBF φn is associated with a point (xn, yn). These points {(xn, yn)}Nn=1 are usually
referred to as centers. We shall assume that we have Nint interior centers {(xn, yn)}Nint

n=1 and
Nbry boundary centers {(xn, yn)}

Nint+Nbry

n=Nint+1 and take N = Nint + Nbry. Often, RBFs include
shape parameters. In this paper, the shape parameter will be denoted by c. The determination
of the optimal value of shape parameter remains a major challenge.

For example, we mention the following popular RBFs which include a shape parameter:

• the normalized multiquadric (MQ) basis function

φn(x, y) = Φ(rn) =
√

(crn)2 + 1, r2
n = (x− xn)2 + (y − yn)2, (3)

and
• the inverse multiquadric (IMQ) basis function

φn(x, y) = Φ(rn) =
1√

(crn)2 + 1
, r2

n = (x− xn)2 + (y − yn)2. (4)

In the case of shape parameter-dependent RBFs we shall denote Φ(rn) in (2) by Φ(c, rn). We
therefore replace approximation (1) by

fN(x, y) =
N∑

n=1

an Φ(c, rn), (x, y) ∈ Ω. (5)

The coefficients {an}Nn=1 in eqn (5) are determined from the collocation equations

fN(xm, ym) = f(xm, ym), m = 1, . . . ,M, (6)

where the points {(xm, ym)}Mm=1 ∈ Ω are the collocation points. Of these, we have
Mint interior collocation points {(xm, ym)}Mint

m=1 and Mbry boundary collocation points
{(xm, ym)}Mint+Mbry

m=Mint+1 and take M = Mint + Mbry. Note that, in general, the collocation points
are not the same as the centers. Clearly, we need to have M ≥ N + 1.
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2.3 Improved RBF approximation

Let Pp be the set of bivariate polynomials of total degree up to p and {pk}Kk=1 be a basis of
Pp. It is known that the number of polynomial terms for degree p is K = (p + 1)(p + 2)/2.
The polynomial basis is thus

pk(x, y) = xi−jyj , 0 ≤ j ≤ i, 0 ≤ i ≤ p, for k = 1, . . . ,K. (7)

In the RBF approximation with an augmented polynomial basis, the approximation (5) is
replaced by

fN(x, y) =
N∑

n=1

an Φ(c, rn) +

K∑
k=1

aN+k pk(x, y), (x, y) ∈ Ω. (8)

Also, in addition to the collocation eqns (6), we have the insolvency conditions

N∑
n=1

an pk(xn, yn) = 0, k = 1, . . . ,K. (9)

Clearly, we still need to have M ≥ N + 1.

3 IMPLEMENTATIONAL DETAILS
Since the shape parameter appears nonlinearly in the collocation eqns (6), the system of
M +K eqns (6) and (9) is nonlinear and can be written in the form

F (a, c) :=


F1

F2

...
FM+K

 =



fN(x1, y1)− f(x1, y1)
...

fN(xM , yM )− f(xM , yM )∑N
n=1 an p1(xn, yn)

...∑N
n=1 an pK(xn, yn)


= 0, (10)

where a = [a1, . . . , aN+K]T are the coefficients in approximation (8).
The nonlinear system (10) may be solved with the MATLAB c© [15] optimization

toolbox routine fsolve. The algorithm used is either a trust-region-dogleg/reflective or
the Levenberg–Marquardt algorithm [17]. The routine fsolve does not require the user
to provide the gradient. When the system is not square, i.e. the number of equations is larger
than the number of unknowns, which is the case in the current problem, the routine uses the
Levenberg–Marquardt algorithm. Alternatively, the solution of the nonlinear system (10) may
be recast as a nonlinear least squares minimization problem by setting

S(a, c) :=

M+K∑
m=1

F 2
m, (11)

where the {Fm}M+K
m=1 are defined in (10). The functional S(a, c) is then minimized using the

MATLAB c© optimization toolbox routine lsqnonlin which solves nonlinear least squares
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problems using, like fsolve, either a subspace trust region method or the Levenberg–
Marquardt algorithm. The routine lsqnonlin does not require the user to provide the
gradient and, in addition, offers the option of imposing lower and upper bounds on the
elements of the vector of unknowns x = [a, c]T through the vectors lb and up. We can
thus easily impose the constraints on the values of the coefficients and in particular on the
values of the shape parameter. It should be noted that both lsqnonlin and fsolve might
give only local solutions.

4 NUMERICAL EXAMPLES
In the numerical examples considered in this section, we calculated the approximate solution
fN at L test points in Ω. We calculated the maximum relative error E defined by

E =
||f − fN||∞,Ω

||f ||∞,Ω
(12)

and the root mean square error (RMSE) E from

E =

√√√√1

L

L∑
`=1

[f(x`, y`)− fN(x`, y`)]
2
. (13)

In Example 1 we used MQ (3) and IMQ (4) while in the other numerical examples we used
only the MQ. For all examples considered the analytical solution is known. In each case,
once the value of the shape parameter c was obtained, the solution was re-calculated for this
value of c. The interior collocation points are taken to be the Halton points [7, Appendix A.1]
while the boundary points are uniformly distributed. The corresponding boundary and interior
centers are obtained in a similar way. We chose a set of L = 101 interior Halton points to be
the set of test points. These may be generated using the MATLAB c© code haltonseq.m.
It was observed that the addition of the bivariate polynomials did not improve the accuracy
of the solution, and hence in all the examples presented we took p = 0. In both numerical
examples, the domain Ω was the unit square (0, 1)× (0, 1).

4.1 Example 1

We approximate Franke’s function [7, Section 2.2]

f(x, y) =
3

4
e
−
(

(9x−2)2+(9y−2)2

4

)
+

3

4
e
−
(

(9x+1)2

49 +
(9y+1)2

10

)

+
1

2
e
−
(

(9x−7)2+(9y−3)2

4

)
− 1

5
e−((9x−4)2+(9y−7)2)

(see Fig. 1).

4.1.1 Experiments with MQ
In Fig. 2(a) we present the results obtained while fixing the value of the shape parameter for
various such values in the case M = 336, N = 278. In Table 1 we present the corresponding
results for the same numbers of collocation points and centers but with the value of the shape
parameter c free with different initial values c0. The obtained results for different c0 are
remarkably consistent and agree with the value of c giving the apparent minima in Fig. 2(a).
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Figure 1: Example 1. The function f(x, y).

Table 1: Example 1: Results for various c0 using MQ with M = 336, N = 278 after 2000
iterations.

M N c0 c E E
336 278 1.0000 4.8689 9.4509(-5) 1.9220(-5)
336 278 2.0000 4.8629 9.4089(-5) 1.9352(-5)
336 278 3.0000 4.8663 9.4283(-5) 1.9025(-5)
336 278 4.0000 4.8902 9.9538(-5) 1.9664(-5)
336 278 5.0000 4.8768 9.7329(-5) 1.9331(-5)

4.1.2 Experiments with IMQ
In Fig. 2(b) we present the results obtained while fixing the value of the shape parameter for
various such values in the case M = 336, N = 278. In Table 2 we present the corresponding
results for the same numbers of collocation points and centers but with the value of the
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Figure 2: Example 1. Results with MQ and IMQ for varying shape parameter for M =
336,N = 278, p = 0.
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Table 2: Example 1: Results for various c0 using IMQ with M = 336, N = 278 after 2000
iterations.

M N c0 c E E
336 278 1.0000 3.5573 4.0088(-4) 4.8095(-5)
336 278 2.0000 3.5709 4.1049(-4) 4.8774(-5)
336 278 3.0000 3.5687 4.0895(-4) 4.8864(-5)
336 278 4.0000 3.5812 4.1749(-4) 4.9525(-5)
336 278 5.0000 3.5785 4.1542(-4) 4.9293(-5)
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Figure 3: Example 2. The function f(x, y).

shape parameter c free with different initial values c0. The obtained results for different c0
are remarkably consistent and agree well with the value of c giving the apparent minima in
Fig. 2(b).

4.2 Example 2

We next approximate the function [6], [8], [13]

f(x, y) =
(

1 + e−1/ε − e−x/ε − e(x−1)/ε
)(

1 + e−1/ε − e−y/ε − e(y−1)/ε
)
.
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(b) ε = 0.5
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(c) ε = 0.25
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(d) ε = 0.1

Figure 4: Example 2. Results for varying shape parameter for ε = 1, 0.5, 0.25 and 0.1,
M = 336,N = 278, p = 0.

As ε > 0 decreases, the problem becomes more difficult (see Fig. 3). In Figs 4(a)–(d) we
present the results obtained while fixing the value of the shape parameter for various such
values in the case M = 336,N = 278 and ε = 1, 0.5, 0.25 and 0.1. In Table 3 we present the
corresponding results for the same numbers of collocation points and centers but with the
value of the shape parameter c free with different initial values c0.

4.2.1 Case ε = 1

In this case the solution is quite flat and convergence is rapid. In Table 3 we present typical
results obtained using MQ RBFs with different initial values for c0. The results show that the
final value of c is close to the one giving a minimum in Fig. 4(a). The nonlinear system was
solved with the MATLAB c© optimization toolbox routine fsolve.

4.2.2 Case ε = 0.5

In this case the solution is not as flat and convergence is not as rapid as for ε = 1. In Table 3
we present typical results obtained using MQ RBFs. We used the routine lsqnonlin for
different initial values c0. The find value of the shape parameter c is close to the optimal value
of Fig. 4(b).

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLI  159



Table 3: Example 2: Results for various c0 using MQ with M = 336, N = 278 after 2000
iterations for ε = 1, 0.5, 0.25 and 0.1.

M N c0 c E E
ε = 1

336 278 0.4000 1.4312 1.0344(-5) 3.5067(-8)
336 278 0.5000 1.4384 1.0296(-5) 3.5667(-8)
336 278 0.6000 1.4277 9.7104(-6) 3.3584(-8)
336 278 0.7000 1.4171 1.1609(-5) 3.3984(-8)
336 278 0.8000 1.4102 1.1596(-5) 3.4626(-8)

ε = 0.5
336 278 0.3000 0.6222 4.1773(-6) 2.2671(-7)
336 278 0.4000 0.6301 4.9118(-6) 2.4898(-7)
336 278 0.5000 0.6477 8.2606(-6) 2.8472(-7)
336 278 0.6000 0.6310 4.7927(-6) 2.3990(-7)
336 278 0.7000 0.6575 1.1300(-5) 3.1951(-7)

ε = 0.25
336 278 0.3000 0.8754 5.2289(-5) 3.7164(-6)
336 278 0.4000 0.9115 5.5683(-5) 3.8877(-6)
336 278 0.5000 0.9189 6.4466(-5) 4.2627(-6)
336 278 0.6000 0.9159 6.9501(-5) 4.6381(-6)
336 278 0.7000 0.9347 4.7612(-5) 3.0524(-6)

ε = 0.1
336 278 0.4000 0.9668 8.4964(-4) 9.5993(-5)
336 278 0.5000 0.9857 7.2374(-4) 9.2681(-5)
336 278 0.6000 0.9955 9.2337(-4) 1.1115(-4)
336 278 0.7000 1.0219 7.3247(-4) 1.0153(-4)
336 278 0.8000 1.0111 9.5063(-4) 1.2014(-4)

4.2.3 Case ε = 0.25
Again, the solution is not as flat and convergence is not as rapid as for ε = 1 and ε = 0.5.
In Table 3 we present typical results obtained using MQ RBFs. We used the routine
lsqnonlin for different initial values c0. The find value of the shape parameter c is close
to the optimal value of Fig. 4(c).

4.2.4 Case ε = 0.1
This is the most difficult case. Covergence is much slower as the solution is not flat. In Table 3
we present typical results obtained using MQ RBFs. We used the routine lsqnonlin for
different initial values c0. The find value of the shape parameter c is close to the optimal value
of Fig. 4(d).

5 CONCLUSIONS
In this work we have considered the approximation of functions by RBF expansions. The
coefficients in these expansions are obtained by collocation. The issue of the optimal value of
the shape parameter in the RBFs used is addressed by including its value in the unknowns of
the problem to be determined by collocation. The resulting system of nonlinear equations
is solved using standard software. The results of several tests reveal that, provided the
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initial value is taken within a certain range, the value of the shape parameter obtained is
close to the optimal value of the shape parameter. A criticism of the proposed approach is
clearly the cost, as we are essentially turning a linear problem into a nonlinear one. This
however has been the case with various other approaches proposed for the determination of
a suitable shape parameter. For example, we mention the use of the so called leave-one-out
cross validation (LOOCV) proposed by Rippa [18]. Future work could involve the use of
different shape parameters for a each RBF in the approximation expansion. The idea of using
variable shape parameters in RBF approximations has been previously used in [1], [19], [21].
Moreover, since both fsolve and lsqnonlin offer the user the option of providing the
Jacobian of the nonlinear system under consideration, it would be interesting to study how
this modification affects the convergence of the method.
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