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ABSTRACT 
In this paper, a numerical algorithm is developed for the solution of two-dimensional isothermal laminar 
viscous flow. The proposed numerical method implementation, which is quadrature-free, is based on 
the stream-velocity formulation of Navier–Stokes equations, the method of the particular solutions and 
the singular boundary method (SBM). The steady stream-velocity formulation of NS equation is 4th 
order biharmonic non-homogeneous nonlinear equation type which is solved using the proposed 
method with the non-homogeneous and nonlinear terms approximated using the method of particular 
solutions with multiquadrics RBF function. The accuracy of the method is proven using 2D backward-
facing step and lid-driven cavity test cases. 
Keywords:  singular boundary method, dual reciprocity, Navier–Stokes equation, biharmonic 
equations. 

1  INTRODUCTION 
The numerical codes based on the theory of boundary integral equations are represented 
mainly by the boundary element method (BEM) [1], [2], that is one of the very important 
numerical methods used for scientific research and engineering practice. 
     However, the BEM is a very efficient numerical method from the mathematical and 
engineering point of view it brings some drawbacks caused mainly by time-consuming 
process of numerical integration. On the other side the boundary collocation methods, like 
the most-known method of fundamental solution (MFS) avoids the process of numerical 
integration and creation of a computational mesh in the sense of BEM. The singularity 
problem of the fundamental solution in MFS is overcome by construction of a fictitious 
boundary. The optimal position of the nodes that make up fictitious this boundary remains 
the open problem. To avoid the need for the fictitious boundary creation Sarler [5] proposed 
the modified method of fundamental solutions (MMFS). The MMFS uses the same set of 
boundary nodes as source and response nodes, but it requires a computationally intensive 
calculation of the characteristic matrix diagonal elements. 
     Chen et al. [6] and Chen and Gu [7] presented a numerical alternative to MMFS called a 
singular boundary method (SBM). Like MMFS, the SBM is using the nodes of regular 
boundary only and regularizes the singularities of fundamental solutions (diagonal elements 
of the characteristic matrix) using the values of so-called origin intensity factors (OIFs). 
There are several rigorous or empirical techniques used to determine the OIFs values, 
namely, inverse interpolation technique (IIT), subtracting and adding-back regularization and 
formulas [8], [9] based on empirical values. In this article, the regularized boundary integral 
equation is used to derive a formula for Dirichlet origin intensity factors. 
     This paper describes the possibility of the steady laminar isothermal flow solution, which 
is governed by the biharmonic (velocity-stream) form of Navier–Stokes (NS) equation using 
SBM with dual reciprocity (DR) scheme. 
     Section 2 of our paper introduces NS equations in velocity-stream form. Section 3 presents 
the basal concepts of the SBM and the connection with the DRM. Sections 4 and 5 are 
dedicated to two numerical examples and Section 6 contains conclusions. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

doi:10.2495/BE410121

Boundary Elements and other Mesh Reduction Methods XLI  131



2  GOVERNING EQUATIONS 
An unsteady incompressible flow is governed by Navier–Stokes equations, which can be 
written in the non-dimensional form using primitive variables as 
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where u and v are horizontal and vertical velocity components respectively, p represents the 
pressure, Re is the non-dimensional Reynolds number and x, y are the spatial coordinates and 
t is the time.  
     Though this formulation accurately represents the fluid flow, its direct solution has been 
difficult to obtain due to the mixed formulation in eqns (1), (2) and lack of the pressure 
development equation. To avoid the direct solution of the pressure field, a formulation using 
stream function and vorticity has been used as an alternative for several decades [10]. This 
formulation introduces the stream function ψ and vorticity ω: 
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     This formulation has been very successful and has been used by many researchers over 
the past several decades to test new methods for the numerical solutions of a variety of fluid 
flow problems. Typical difficulty with this formulation consists of the specification of 
vorticity values at the no-slip boundaries; the vorticity ω is defined through the Poisson eqn 
(4) which needs to be solved discretely on the boundaries so that boundary values of the 
vorticity can be specified for the vorticity transport eqn (5) when this formulation is utilized. 
However, the values of vorticity ω on the boundaries are generally unspecified and one must 
carry out a variety of numerical approximations in order to specify the boundary values of 
vorticity [10]. 
     To avoid the process of determination of boundary vorticity values the vorticity can be 
eliminated from the eqns (4), (5) at the price of 4th order non-linear, non-homogeneous, 
biharmonic partial differential eqn (6) [11]: 

 
డరట

డ௫ర ൅ 2
డరట

డ௫మడ௬మ ൅
డరట

డ௬ర െ 𝑅𝑒 ቂ𝑢 ቀ
డయట

డ௫య ൅
డయట

డ௫డ௬మቁ ൅ 𝑣 ቀ
డయట

డ௬య ൅
డయట

డ௫మడ௬
ቁቃ ൌ 0, (6) 

where ψ represents stream function, u and v are velocity components that can be expressed 
in the terms of stream function as 
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The boundary conditions of eqn (6) are divided into two basic groups  

 two boundary conditions of the Dirichlet type, where the value of variable ψ or its 
Laplacian Δψ on the part of boundary Γ1 or Γ3 is given, i.e.  
 

 𝜓 ൌ U଴ሺ𝐱ሻ 𝐱 ∈ 𝛤ଵ,   ∆𝜓 ൌ V଴ሺ𝐱ሻ 𝐱 ∈ 𝛤ଷ (8) 
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 two boundary conditions of the Neumann type, where the value of the normal 
derivative of stream function or its Laplacian on the boundary Γ2 or Γ4 is given, i.e.  
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where n is the outward normal to the boundary Γ2 or Γ4. 

     For the numerical solution of the biharmonic eqn (6) the two boundary conditions need to 
be specified to obtain a solution [11]. 

3  SINGULAR BOUNDARY METHOD 
The principle of the MFS is up to some level used by the singular boundary method (SBM) 
The main difference and superiority of SBM over MFS is no need of fictitious boundary. The 
SBM uses the same set of nodes as source and response points positioned on regular the 
boundary Γ. The solution of the homogeneous biharmonic equation is approximated by the 
linear combination of Laplace (11) and biharmonic (10) fundamental solutions (see eqn (12)) 
[12] 
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     The diagonal term that arises when the source and response nodes are at the same position 
[7]–[9] can’t be evaluated directly and needs to be determined using one of the 
aforementioned procedures and this process represents the crucial part of the SBM. To 
elaborate the solution (12) the singular terms that cannot be directly computed are moved 
outside the sum  
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and similarly, for the boundary normal derivative at location xi  
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the unknown coefficient 𝑈௜௜
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ଵ  are defined as OIFs. OIFs for a biharmonic 
fundamental solution can be handled very easy using limit to eliminate the singularity as the 
collocation point approaches the source point. So, for the OIFs that arises from biharmonic 
fundamental solution one can write 
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     The OIFs associated with the Laplace fundamental solution can be determined using 
subtracting and adding-back technique for the normal derivative (Neumann) boundary 
condition [7], [13] 
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where Lj is the length of the appropriate part of boundary around point xi (see Fig. 1). The 
value of the OIF for prescribed solution value (Dirichlet BC) on the boundary, the formula 
based on the regularized boundary integral equation is used [13] 
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3.1  Dual reciprocity method 

The biharmonic (stream – velocity) form of the Navier–Stokes equation represents nonlinear, 
non-homogeneous boundary value problem. The governing eqn (6) can be rearranged 
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The solution of (19) can now be defined as the sum 
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where ψh is a solution that satisfies the homogeneous biharmonic equation and prescribed 
boundary conditions. The ψp represents a particular solution of the non-homogeneous eqn 
(19). The homogeneous part of the solution was calculated using the singular boundary 
method (SBM) and the particular part of the solution is obtained adopting dual reciprocity 
method. The particular solution ψp is approximated as a linear combination of radial basis 
(RBF) kernels as  
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where Φ(rj) are radial basis functions, βj are constants to be determined and M is the number 
of the internal points. The function Φ(rj) represents a solution of the following equation 

 ∆ଶΦ൫𝑟௝൯ ൌ φ൫𝑟௝൯, (22) 

where φ(rj) are also radial basis kernels. The multiquadrics RBF (MQ see Table 1) have been 
tested for computations presented in this paper. Other appropriate possibilities can be found 
in [2], [13]. 

 

 

Figure 1:  Part of boundary L around point xi. 
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Table 1:  Integrated MQ radial basis functions tested in this paper. 

φ(r) ΔΦ(r) Φ(r) 
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     According to the above definitions and the eqn (19), we can write 
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because the nonlinear character of eqn (17) iterative procedure is adopted to solve eqn (23) 
while the terms on the right-hand side of eqn (23) will be evaluated using MQ (see Table 1) 
interpolation functions with coefficients β and fundamental solutions with coefficients a and 
b knew from the previous iteration. The explicit iterative form of eqn (23) one can write as 
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     Eqn (24) will be formed for every internal node (M – the number of internal nodes) which 
gives M equations. To close the linear system, we must impose 2N boundary condition values 
in all boundary nodes (two for each node). These 2N equations are obtained imposing the 
first type of Dirichlet and Neumann boundary conditions  
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The closed system of eqns (24)–(26) is then iteratively solved until the overall difference 
between two successive steps is smaller than ε=1×10-5. 
     The DRM technique is applied to approximate nonlinear and non-homogeneous terms of 
eqn (19) over the whole computational domain. However, as has been remarked by several 
researchers, the DRM yields accurate stable solutions for a Reynolds number up to 200. 
     This limitation shows that special domain treatments are required to obtain the solution 
for higher Reynolds numbers [14]. 
     In the BEM focused articles, one can often find references to the division of computational 
domain into smaller regions – sub-domains [14]. When the convection effect becomes 
stronger, the sub-domain technique offers the possibility of emulating a computational mesh 
in homogeneous medium by dividing it into sub-domains and then applying the complete 
SBM with DRM to each of these sub-domains. Such a method used to be called Multiple 
Domain Singular Boundary Method with Dual Reciprocity – MD-SBMDR. 
     The detail of single simple square domain is shown in Fig. 2 with the detail of global 
computational domain “mesh”. 
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Figure 2:   The sub-domain used in the MD-SBMDR formulation and “mesh” of multiple 
sub-domains covering the global computational domain. 

4  SIMULATION OF THE LID-DRIVEN CAVITY PROBLEM 
The standard benchmark problem for the numerical solver of incompressible, isothermal and 
laminar flow based on the Navier–Stokes equation is Lid-driven cavity flow. The top 
boundary of the cavity imposes a generation of the velocity u=1 to the flow moving the top 
lid, and no-slip impermeable boundary conditions are prescribed for the bottom, left and right 
wall. In a case of the stream function, the following boundary conditions are used 
 

ψሺ0, yሻ ൌ ψሺ1, yሻ ൌ ψሺx, 0ሻ ൌ ψሺx, 1ሻ ൌ 0, 
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 (27) 
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ൌ 1. 

     The geometrical configuration and prescribed boundary conditions are shown in Fig. 3. 
The challenging aspect of this benchmark problem lies in the presence of singularities of 
pressure and velocity field at the two upper corners of the cavity. Therefore, the size of 
computational sub-domains used decreases as their position is close to these corners (see Fig. 
3) to capture high stream function gradients. 
     The steady solution using the MD-SBMDR is reached when the difference between two 
consecutive time steps (in the sense of the infinity norm) is lower than the prescribed, εtol = 
1×10-6 is used for presented numerical computations.  
     The solutions obtained by the MD-SBMDR are compared with the solution presented in 
[15] for the Reynolds number Re=1000; the vertical velocity components along a horizontal 
line and the horizontal velocity components along a vertical line through the center of the 
cavity are plotted in Fig. 4. Figs 5 and 6 present stream-function ψ and pressure contours for 
Reynolds numbers Re=400 and 1000. 
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Figure 3:   The lid-driven cavity problem geometry, boundary conditions, and 
computational domains distribution. 

 

Figure 4:   Lid-driven cavity, Re=1000. (a) Horizontal velocity components along vertical 
line x=0.5; (b) Vertical velocity components along horizontal line y=0.5. 

5  SIMULATION OF THE BACKWARD-FACING STEP FLOW 
The backward-facing step flow is another benchmark problem widely used to test the 
efficiency of the incompressible flow solver. Numerous numerical and experimental 
simulations of backward-facing step were performed [16]–[18]. The inlet velocity boundary 
condition is prescribed as fully developed flow, and maximum inflow velocity is umax=1.5, 
and the average inflow velocity is ua=1. The Reynolds number can then be defined as 

 𝑅𝑒 ൌ
௨ೌு

ఔ
, (28) 

where H is the height of the channel (see Fig. 7). 
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Figure 5:  Stream function contours (streamlines) for Re=400 and 1000. 

 

Figure 6:  Pressure contours for Re=400 and 1000. 

     Stream function boundary conditions for a backward-facing step can be expressed in the 
following manner: 

𝜓ሺ𝑥, 0ሻ ൌ 0  𝑥 ∈ ሾ0, 𝐿ሿ, 
𝜓ሺ0, 𝑦ሻ ൌ 0  𝑦 ∈ ሾ0,0.5ሿ, 

 𝜓ሺ0, 𝑦ሻ ൌ 2𝑦ଶሺ3 െ 4𝑦ሻ  𝑦 ∈ ሾ0.5,1ሿ, (29) 

𝜓ሺ𝐿, 𝑦ሻ ൌ 0.25 ൅
ሺ3 െ 4𝑦ଶሻ𝑦

4
   𝑦 ∈  ሾ0,1ሿ, 

𝜓ሺ𝑥, 1ሻ ൌ 0  𝑥 ∈ ሾ0, 𝐿ሿ. 
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Figure 7:  The geometry of the backward-facing step problem. 

 

 

Figure 8:   Stream function contours (streamlines) and pressure contours for backward-
facing step, Re=800. 

 

Figure 9:   Backward-facing step, comparison of the horizontal velocities in profiles x=3 
and x=7 for Re=800. 
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     The computational domain of this problem is covered by uniform cell mesh that is made 
up of 161 cells in the horizontal and 11 in the vertical direction. The steady solution is reached 
when the difference between two consecutive stream function solutions is lower than a 
prescribed tolerance. 
     Fig. 8 shows streamlines and pressure contours for Re=800, and Fig. 9 shows the 
comparison of horizontal velocity values in vertical cuts positioned at x=3 and x=7, with the 
solution presented in [18]. Comparing results of the MD-SBMDR for Re=800 with results of 
other researchers is highly identical. 

6  CONCLUSIONS  
This article presents the application of multi-domain SBM and DRM (MD-SBMDR) for the 
solution the incompressible laminar flow described by a biharmonic stream-velocity form of 
Navier–Stokes equation. Two types of benchmarking problems, lid-driven cavity and 
backward-facing step, have been successfully tested. This type of boundary collocation 
method showed a potential to be a promising alternative to the solutions of incompressible 
fluid flow using the boundary based numerical schemes. The presented numerical code and 
numerical results need to be more analyzed in the sense of precision, convergence and 
computational demands. 
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