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ABSTRACT 
A novel discretization method is proposed and developed for numerical solution of boundary value 
problems governed by partial differential equations. The spatial variation of field variables is 
approximated by using Lagrange finite elements for interpolation without discretization of the analysed 
domain into the mesh of finite elements. Only the net of nodal points is used for discrete degrees of 
freedom on the analysed domain and its boundary. The governing equations are considered at interior 
nodal points while the boundary conditions at nodal points on the boundary. The finite elements are 
created for each nodal point properly instead of using fixed finite elements like in standard Finite 
Element Method. In this way, we can eliminate interfaces between elements as well as the difficulties 
with continuity of derivatives of field variables on such interfaces. Both the strong and weak 
formulations are implemented for governing equations. The reliability (accuracy and efficiency) of the 
new method has been verified in numerical simulations for 2D problems of heat conduction in solids 
with possible continuous gradation of the heat conduction coefficient. 
Keywords:  Lagrange finite element, bi-quadratic and bi-cubic approximation, strong and weak 
formulations. 

1  INTRODUCTION 
The Finite Element Method (FEM) is the most widely used computational method because 
of its universality and simplicity. Nevertheless, it suffers from discontinuities of derivatives 
on element interfaces as long as C0 continuous finite elements (FE) are employed [1]. 
Another favourite subdomain method is the Finite Volume Method (FVM) [2], [3] enforcing 
the conservation (or balance) physical laws. Recently various mesh-free methods appeared 
which are universal. The price which should be paid for elimination of creation of 
discretization elements is time consuming evaluation of shape functions because of the loss 
of polynomial interpolation.  
     In 1981, Miller introduced the Moving Finite Element Method (MFEM) [5], [6] as an 
adaptive grid method in which the grid of finite elements deforms continuously in time with 
the solution. This method found wide application in vast diversity of problems in science and 
engineering involving time-dependent PDE describing solutions with pronounced spatial 
activity in some regions of space that move with time [7], [8]. 
     In this paper, we propose the strong and weak formulations with developing the so called 
Moving Finite Element (MFE) approximation. In contrast to the MFEM [5]–[8], the grid of 
nodes is fixed (not adaptive) in the proposed method and the FE are created individually 
around each nodal point according to its position in the analysed domain.  

2  HEAT CONDUCTION IN FGM SOLIDS: DISCRETIZATION WITH 
POLYNOMIAL INTERPOLATION 

For the sake of simplicity, let us consider the stationary heat conduction in 2D domain of 
isotropic solid with the governing equation 

  , ,
0i i

u   or , , , 0ii i iu u    in   (1) 

and the boundary conditions 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

doi:10.2495/BE410111

Boundary Elements and other Mesh Reduction Methods XLI  119



 ( ) ( )u Tx x  on T ; ,( ) ( ) ( ) ( )i in u f x x x x  on f ; T f    . (2) 

The heat conduction coefficient   is assumed to be continuous differentiable function of 
Cartesian coordinates. In general, the analytical solution of the mentioned boundary value 
problem is not available and discretization methods utilizing polynomial interpolation belong 
to widely spread numerical techniques because of their universality, simplicity and 
computational efficiency. The field variable is approximated in certain subdomain as 

( ) ( ) ( )c c

c
u u  x x x , 

where the unknown field variable is expressed in terms of finite number of nodal unknowns 

( )cu x and known shape functions ( )c x . For calculation of the unknown nodal values, 

there are mostly used two approaches: (i) the strong formulation with collocation of the 
governing equation at nodal points; (ii) the weak formulation when the governing equation 
is considered in integral sense with using appropriate test functions. The prescribed boundary 
conditions can also be considered either in the strong or weak sense. 

2.1  Moving Finite Element (MFE) approximation 

Instead of discretization of the analysed domain into finite elements, we consider the net of 
nodal points which can be used for creation of so called moving finite elements individually 
around particular nodes according to their localization in the analysed domain as illustrated 
in Fig. 1 for planar elements. There are shown the bi-quadratic Lagrange elements (with 9 

nodes). If ax is an interior node of the analysed domain, the FE is constructed from 

surrounding nodes in such a way that ax is the centre of the FE. In the case of a corner node 
the associated FE is constructed uniquely. Finally, the FE associated with other boundary 
node involves this node as the mid-side node of the FE. Obviously, a uniform mesh of nodes 
is the most appropriate one for generation of moving finite elements around each node. 

Having defined the FE around particular nodes ax , one can simply approximate the spatial 

variation of a field variable within the associated moving finite element
aE  

 
1

( ) ( )a
n a

Eu u N 

 
 x ξ , ( )

a au u  x , (3) 

where ξ  is the shortcut for intrinsic coordinates  1 2,  , ( )N ξ stand for standard 

interpolation shape functions in Lagrange FE, and a  is the global number of the node on 

the element aE with the local number {1,2,..., }n  . In order to account also the 2nd order 

derivatives of field variables, it is necessary to use finite elements with complete higher order 
polynomial interpolation, at least bi-quadratic Lagrange FE defined with 9 nodes [1]. 

     If ax is an interior node of the analysed domain, the FE is constructed from surrounding 

nodes in such a way that ax is the centre of the FE. In the case of a corner node the associated 
FE is constructed uniquely. Finally, the FE associated with other boundary node involves this 
node as the mid-side node of the FE. Obviously, a uniform mesh of nodes is the most  
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Figure 1:   Creation of moving FE around the interior node ax  as well as the boundary node 

and corner nodes bx . 

appropriate one for generation of moving finite elements around each node. Having defined 

the FE around particular nodes ax , one can simply approximate the spatial variation of a field 

variable within the associated moving finite element aE  

 
1

( ) ( )a
n a

Eu u N 

 
 x ξ , ( )

a au u  x , (3) 

where ξ  is the shortcut for intrinsic coordinates  1 2,  , ( )N ξ stand for standard 

interpolation shape functions in Lagrange FE, and a  is the global number of the node on 

the element aE with the local number {1,2,..., }n  . In order to account also the 2nd order 

derivatives of field variables, it is necessary to use finite elements with complete higher order 
polynomial interpolation, at least bi-quadratic Lagrange FE defined with 9 nodes [1]. The 
gradient of the field variable can be approximated on the FE as 

 ,
1

( )
( ) ( )a
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i iE
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
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
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Recall that the matrix [Y ]a  is the inverse of the Jacobi matrix, i.e. 1[ ] [ ]a aY J  , and 

1 11 1 2 1 1 2

11 2 2 2 2 21 2

/ // /

/ / / /a

a a
na

a a
E

x N x Nx x
J

x x x N x N

 

 

 

 

  
   

                           
, 

 
1a

n
aa i

ki i
k kE

x N
J x 



 

 
 
 

 , (5) 

since we use the isoparametric elements and the Cartesian coordinates are approximated as 

 
1

( )a

n
a

i iEx x N 

 

  ξ . (6) 

Apparently, 

1 2 12 2

1 2 11 1

/ /1

/ /

a an
a a

a a a

x N x N
Y J

J x N x N

 

 

 

 
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 





                     
 , 

 1 2 1 2
1 2

1 2 2 1 1 2 2 1, 1a

n
aaa

E

x x x x N N N N
J x x 

   

        

       
   

       

  
       

 . (7) 

As regards the 2nd order derivatives, we can write 

2

,
1

( )
( ) ( )a

a

n
a am

ij iE i j j mE

uu u b
x x x

 






 
  
   x

x ξ  

  ,, , ,
1 1

( ) ( ) ( )
n n

a aa a a a a
jm ik jm ik ik mk km k

m
u Y Y N u Y Y N Y N   

  

       ξ ξ ξ  

 ,, ,
1

( ) ( )
n

a a a a a a
jm ik is sl m lkkm ku Y Y N Y J Y N  

 

     ξ ξ   

 ,,
1 1

( ) ( ) ( )
n n

a aa aa a a a
jm ik is sl m ijkm lu Y Y N Y J b u b   

  

     ξ ξ ξ  (8) 

since 

  , ,
,

0a a a a a a
ik kl ik m kl ik kl mm

Y J Y J Y J      , ,
a a a a

ik m is sl m lkY Y J Y   
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with 
2

, ,s
1

n aa a
sl m mll

s m

NJ x J


  


 

   

 ,,( ) : ( ) ( ) ( )a a aa a a a
jm ik is sl mij jikm lb Y Y N Y J b b       ξ ξ ξ ξ . (9) 

Note that in the case of standard FEM with C0 continuous elements, one can expect 
discontinuities of both the 1st and 2nd order derivatives on interfaces of finite elements. On 
the other hand, in the case of moving finite elements approximation, there are no element 
interfaces because each node is either interior node of the associated FE, or it is a mid-side 
node or a corner of the associated FE. Thus, the C0-continuity troubles of standard FEM 
disappear in formulations based on MFE approximation. 

2.2  Strong formulation based of MFE approximation 

The strong formulation seems to be computationally the most efficient formulation because 
the only thing, needed for creation of discretized equations for calculation of nodal 
unknowns, is approximation of derivatives at nodal points, since the discretized equations 
take the form 

 ,
1 1

( ) ( ) ( ) ( ) 0c c
n nc cc cc c

iij iu b u b   

 
 

 
  x ξ x ξ  for each c x , (10a) 

 ( ) ( )b bu Tx x  for b
Tx , (10b) 

 
1

( ) ( ) ( )b

n
bb b b

i in u b f 






 x ξ x  for 
b

fx , (10c) 

where c  is the local number ( and 1 2,c c    are intrinsic coordinates) of the global node

cx on the associated finite element cE . The formulation resembles the Finite Difference 
Method (FDM), but the approximation of field variable used here is different. 

2.3  Weak formulation based of MFE approximation 

The weak form of the governing eqn (1) is given as 

  , ,
( ) ( ) ( ) 0i i

u d 


  x x x , (11) 

where ( ) x is a weight function. Selecting the weight function as the compactly supported 

function  

1,
( )

0, otherwise ,

,a
a







x
x  
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with a a a    being the subdomain of the analysed domain  and taken around a 

point a a x , eqn (11) can be rewritten as  

 ,( ) ( ) ( ) 0
a

iin u d


  x x x , (12) 

where ( )in x is the unit outward normal vector at ax .  

     From the physical point of view, eqn (12) expresses the energy balance in local subdomain 
a with absent volume heat sources. From the mathematical point of view, it is the 

formulation for solution of the considered problem by the Finite Volume Method (FVM) [4] 
without specifying the approximation of field variable. In this paper, we employ the MFE for 
approximation. In contrast to the strong formulation, now it is sufficient to approximate only 
the 1st order derivatives of the field variable, but we need to integrate over the boundary of 

local subdomain. Recall that the subdomain a should involve only one nodal point ax in 

the assumed MFE approximation. Since there are no other restrictions for selection of a , it 

is reasonable to select such a shape of a that the integration over a would be as simple 

as possible. Furthermore, the integration is carried out in the intrinsic space and a  is the 

image of a resulting from the transformation: a a   ξ x according to (6). Therefore 

we select a as the circle centred at  1 2,a a   , i.e.  ; | | 1aa aE      ξ ξ ξ  . 

Denoting the radius of the circular contour a  as a , the intrinsic coordinates of a point 

on
a can be expressed in terms of one angular parameter [0, 2 ]   as 

   1 2; cos sinaa a a
k k kkE             ξ  . (13) 

Since a is constant on a , we have a
a

k kd d      , 2 1cos sink k k      and the 

infinitesimal length arc of circular contour a  is a
a

k kds d d       . Then,  

 a aa
a a

ai i
i i i i

dx g
d dx ds g ds g d

ds g
    

 

     , (14) 

where the unnormalized tangent vector on 2
a a is defined as : /i ig dx ds and it can be 

expressed as 

2 1

1 1 1
cos sin

a

a

aa

ji i i i
i a a a

j

dx x x xg
d d


 

      
 

    
       

. 

Hence, 
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  ,2 ,1
1

1
: ( ) cos ( ) sin

a a a

a

n
a

i i ia
g g x N N  



 


  




   ξ ξ , (15) 

with      1 2 1 2: , , cos , sin
a a a

a a a           ξ . 

     The unit normal vector on a can be defined as 3 /
a a

ai ik kn g g  
  . Thus, eqn 

(12) can be rewritten as 

 

2

3
1 0

( ) ( ) 0
a a an

aa a
ik i ku b g d






     



  x ξ , (16) 

with the Cartesian coordinates of the integration point on
a are given by 

1

: ( )
a a

a

n
a

i i ix x x N 



 




   ξ . 

The discretized prescribed boundary conditions can be considered in the same way as in the 
strong formulation. Then, the complete set of discretized equations in the weak formulation 
is given by eqns (16), (10b) and (10c).  

3  NUMERICAL EXAMPLES 
In order to test the applicability of the MFE approximation, we compared accuracy and 
computational efficiency achieved by both the strong and weak formulations with MFE 
approximation and by the standard FEM in solving simple problem of stationary heat 
conduction in a rectangular domain of solids with constant and/or functionally graded heat 

conduction coefficient . The dimensionless formulation is used with 1 2 3 3L L   , 

prescribed temperature on the bottom and top 1 2( , 0) 0u x x   , 1 2( , 3) 100u x x   ; the 

lateral sides are thermally isolated 
1 1

, ,0 3
0i i i ix x

n u n u
 

  ; the functional gradation is 

considered as power-law gradation in the vertical direction  20 2 21 2 /x L   . In 

numerical solution, we employed uniform net of nodal points with 1n , 2n , 1 2N n n   

being the number of nodes in horizontal and vertical directions, and the total number of 
nodes, respectively. Since we shall use also the standard FEM, the net of nodes is designed 
to be applicable also to FEM discretization. Furthermore, the Lagrange finite element is 

composed of n n  nodes. Therefore,  1 1 1n e n  and  2 2 1n e n  , where ke

is the number of FE along the kx -direction. Since the problem is actually 1-dimensional, we 

have chosen 1 1e   and 2e  (or 2n ) to be variable. Finally, we have used quadrilateral bi-

quadratic ( 9n  ) as well as bi-cubic ( 16n  ) Lagrange finite elements. The accuracy is 
characterized by average relative error defined as  
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1

1 ( )
1

( )

N c a

e a
a

f
N f

 x

x
, 

with the superscripts c  and e  denoting the computed and exact values, respectively. 
     Firstly, consider the results for heat conduction in a homogeneous solid. We achieved very 

precise numerical results for the temperature ( )cu x as well as temperature gradients ,2 ( )cu x . 

In this case, the exact solution is given by linear distribution of temperature and almost exact 
solution is achieved by using only one FE. Any other increase of degrees of freedom in 
numerical calculation yields increasing numerical error. Nevertheless, the best accuracy is 

achieved by strong formulations with MFE approximation. Since ,22 ( ) 0eu x , we have used 

average absolute error instead of average relative error. Now, the accuracy by standard FEM 
is significantly worse than that by using formulations with MFE approximation and the bi-
cubic FE results into one order better accuracy than the bi-quadratic FE. 
 

Figure 2:  Comparison of accuracies for cu , ,2
cu , and ,22

eu  in a homogeneous solid. 
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Figure 3:  Comparison of computational efficiency in case of homogeneous solid. 

     There is significant difference between the computational times by using standard FEM 
and formulations with MFE as well as between the strong and weak formulations.  
     Substantially different accuracy is achieved for problems in FGM solid, when the exact 

solution exhibits a non-linear variation. Unexpectable accurate are numerical results for cu
obtained by strong formulation with MFE approximation. The other three techniques exhibit 
convergence to exact solution with increasing the amount of nodes and the convergence of 

cu by the standard FEM is faster than by other two MFE approaches. Nevertheless, the best 

accuracy of ,2
cu is achieved by the MFE with bi-cubic FE, while in the case of bi-quadratic 

FE there is no difference in accuracy achieved by the weak and strong formulations with 
MFE and the accuracy by standard FEM is the worst. Similar conclusion can be drawn also 

for the accuracy of ,22
eu  but the differences in achieved values are more remarkable. As 

regards the computational times, these are practically the same as in the case of homogeneous 
solid. The main shortcoming of the standard FEM approach consists in discontinuity of 

derivatives on FE interfaces. The differences in relative errors of ,2
cu vary between 3% (on 

the top of bottom FE) and 0.5% (on the bottom of the top FE) if 2 5e  , while in the case of

,22
eu  these differences are 28% and 6%. 

4  CONCLUSIONS 
The Moving Finite Element (MFE) approximation is proposed and developed. In contrast to 
the standard FEM, there is no mesh of FE created, but the polynomial interpolation is 
successfully utilized within MFE created individually around each nodal point of the net of 
nodes. Thus, the difficulty of discontinuous derivatives on FE interfaces is eliminated and C0 
continuous Lagrange FE are applicable to both the weak and strong formulations for solution 
of boundary value problems. In numerical test examples, the reliability of the method is 
verified and comparative study accomplished with using quadrilateral bi-quadratic and bi-
cubic Lagrange FE. 
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Figure 4:  Comparison of accuracies for cu , ,2
cu , and ,22

eu  in the FGM solid. 
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