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ABSTRACT
Various integral equation formulations and the related numerical solutions either via Boundary Element
Method (BEM) or Method of Moments (MoM) require tedious calculation of double surface integrals
arising from the use of vector triangular basis functions. This paper presents an accurate technique for
computation of these integrals by first converting the surface integrals to contour integrals facilitating
the decomposition of boundary integral to the sum of line integrals over triangle edges. It was shown
that application of this technique to a Laplace type of equations yields expressions having analytical
solutions. Moreover, although the same was not possible to achieve in case of integrals involving
Helmholtz kernels, nonetheless, the technique enabled the computation of surface integrals to a machine
accuracy by employing the adaptive quadrature rules. This approach could be found useful in the high
frequency computational dosimetry.
Keywords: boundary element method, Helmholtz equation, Laplace equation, adaptive quadrature,
contour integrals.

1 INTRODUCTION
Boundary element method (BEM) is a domain reduction method for solving partial
differential equations (PDE’s). In contrast to finite element method (FEM), BEM requires
surface-only discretization. The versatility of BEM is well known, and nowadays BEM
found applications in elasticity problems [1], [2], acoustics [3], [4], electromagnetism [5], [6],
seismology [7], [8] and in significant number of other engineering applications [9]–[12].

There is a number of three-dimensional (3D) BEM formulations where the domain can
be reduced using Green’s theorems and the field φ(~r ) at observation point ~r can be expressed
as the surface integral [13]–[15]:

α(~r)φ(~r) =

∮
∂V

dS ′
[
G(~r, ~r ′)

∂φ(~r ′)

∂~n ′
− φ(~r ′)

∂G(~r, ~r ′)

∂~n ′

]
, (1)

where ∂V is bounding surface of computational domain V , ~n is an outward unit normal
vector and ~r ′ is source point. Depending on the observation point position, α(~r ) is either 0,
1/2 or 1 [16].

The Green’s function G(~r, ~r ′) represents the fundamental solution to the L [G(~r, ~r ′)] =
−δ (~r, ~r ′). In case of BEM applied to Laplace or Helmholtz problem, the fundamental
solution is a function of R = |~r − ~r ′|, R being the distance between the observation and
the source point, respectively [17], [18].

After having discretized the boundary ∂V followed by interpolation of φ(~r ) and it’s
normal derivative using shape functions Ni, the linear system of equations is obtained,
containing the following two types of integrals:

I1(~r ) =

∫
S∆

Ni(~r
′)G(R)dS ′, (2)

I2(~r ) =

∫
S∆

Ni(~r
′)
∂G(R)

∂~n ′
dS ′, (3)

,
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where S∆ is the surface of element into which the surface ∂V is discretized.
In case of regular integrals, where ~r 6= ~r ′, the numerical integration of (2) and (3) is

usually sufficient. For nearly singular integrals, often times it is sufficient to increase the
number of integration points or the use of finer discretization is necessary. However, in case
of singular integrals, where ~r = ~r ′, and depending on the type of singularity, it is required
to perform certain additional steps [19], such as singularity extraction [20], [21] or the so
called singularity cancellation technique [22], [23], which includes transformation to polar
coordinates or domain transformation, resulting in an extra computational burden if aiming
to achieve accuracy.

Hence, an accurate technique for computation of these integrals to a desirable precision
could be found useful. As showed in [24], accurate computation of (2) and (3) is particularly
important when BEM or MoM, respectively, are utilized in the computational dosimetry
of human exposure to electromagnetic field (EMF) since the resulting numerical artifacts
will significantly affect the reliability of the numerical technique for this purpose. To
overcome this, the singular integrals arising in these type of problems can be computed
by first converting the surface integrals to contour integrals facilitating the decomposition
of boundary integral to the sum of easily and quickly computed line integrals over triangle
edges.

This paper is organized as follows: following the introductory part, the shape functions
over the triangular elements are given in terms of the position vector and the kernel
modification is given in the second section. Some details on the procedure for converting
surface integrals to contour integrals are given in the following sections. Moreover, the
application to a Laplace type of equations and integrals involving Helmholtz kernels is also
given as well as some numerical results for the contour integration on several test examples.
The final part is related to the concluding remarks and some consideration for the future work.

2 MATHEMATICAL FORMULATION

2.1 Shape functions over triangular elements

When considering BEM for the solution to the boundary value problem in 3D, the boundary
surface is usually decomposed into triangular or quadrilateral elements. In case of first order
triangular element, as shown in Fig. 1, the shape functions Ni can be expressed in terms of
area coordinates such as [25]:

Ni =
Ajk
A
, i = 1, 2, 3; j = 2, 3, 1; k = 3, 1, 2, (4)

where A and Ajk are the area of first order triangular element and areas of sub-triangles,
respectively, as denoted in Fig. 1.

In order to express the shape functions Ni using the position vector ~r ′, the sub-areas Ajk
are expressed as:

Aij =
1

2
~n ′ · (~rj − ~r ′ )× (~ri − ~r ′ ) , (5)

whereas the area A of triangle4123 can be written as:

A =
1

2
~n ′ · (~r2 − ~r1)× (~r3 − ~r1) . (6)

Inserting (5) and (6) into (4) the shape functions can be written as:

Ni(~r
′ ) =

~n ′ · (~rj − ~r ′ )× (~rk − ~r ′ )
2A

, i = 1, 2, 3; j = 2, 3, 1; k = 3, 1, 2. (7)
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Figure 1: First order triangular element. Vectors ~ri, i = 1, 2, 3, are the position vectors of
vertices 1,2 and 3 whereas vector ~r ′ is the position vector of point P . Vector ~n ′ is
the constant unit normal vector to triangle4123. Triangle edges are e1, e2 and e3.

After expanding the cross product in (7), and using ~r ′ × ~r ′ = 0, (7) can be rewritten as:

Ni(~r
′ ) =

~n ′ · [~rj × ~rk + ~r ′ × (~rj − ~rk)]

2A
, i = 1, 2, 3; j = 2, 3, 1; k = 3, 1, 2. (8)

After adding and subtracting ~r × (~rj − ~rk) to the numerator of (8), where ~r is the
observation point Q (shown in Fig. 2), yields the following:

Ni(~r
′, ~r ) = ~n ′ · (~r ′ − ~r )× ~ai + bi(~r ), (9)

where ~ai is a constant vector given by:

~ai =
~rj − ~rk

2A
, (10)

while coefficients bi(~r) are given as:

bi(~r ) =
~n ′ · ~rj × ~rk

2A
+ ~n ′ · ~r × ~ai, (11)

where i = 1, 2, 3; j = 2, 3, 1; k = 3, 1, 2.

2.2 Modification of the kernel

In order to convert the surface integrals (2) and (3) to contour integrals, the integrand first has
to be appropriately transformed so the Gauss’ theorem for the surface could be applied. This
is done by rewritting the function G(R) in the following way:

G(R) = ~n · ∇ ′ × [u(R)~q ] , (12)

where R = |~r − ~r ′|,∇ ′ is del operator acting only on primed coordinates and function u(R)
is given by the following integral:

u(R) =

∫
RG(R)dR. (13)
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Figure 2: Triangle located in plane Π defined by unit normal vector ~n ′. The source and
observation points are denoted by P and Q, respectively. Point T is the projection
of Q on the triangle plane, while d is the distance between points Q and T.

Furthermore, vector ~q can be written as:

~q =
1

ρ2
~n ′ × (~r ′ − ~r ) , (14)

where ρ is the distance from point T to the source point P , as shown in Fig. 2.
Applying the vector identity ∇×

(
f ~A
)

= ∇f × ~A+ f∇× ~A, the right-hand side
of (12) can be rewritten as:

~n ′ · ∇ ′ × [u(R)~q ] = ~n ′ · ∇ ′u(R)× ~q + u(R)~n ′ · ∇ ′ × ~q. (15)

The gradient∇ ′u(R) can be evaluated using the chain rule as:

∇ ′u(R) =
3∑
i=1

∂u(R)

∂R

∂R

∂xi
~ei =

∂u(R)

∂R
∇ ′R, (16)

where xi and ~ei are the coordinates and the unit ort vectors in the Cartesian coordinate system,
respectively.

As the partial derivative of u(R) is equal to RG(R), and ∇ ′R = (~r ′ − ~r )/R, eqn (16)
thus becomes:

∇ ′u(R) = (~r ′ − ~r )G(R). (17)

Inserting (14) and (17) in (15), the first term on the right hand-side term can now be
rewritten as:

~n ′ · ∇ ′u(R)× ~q = ~n ′ · (~r ′ − ~r )× [~n ′ × (~r ′ − ~r )]
G(R)

ρ2
. (18)

It is easily showed that the triple product from (18) is equal to:

~n ′ · (~r ′ − ~r )× [~n ′ × (~r ′ − ~r )] =

= ~n ′ · ~n ′ [(~r ′ − ~r ) · (~r ′ − ~r )]− [~n ′ · (~r ′ − ~r )]
2

= R2 − d2 = ρ2, (19)
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where d is the distance between points Q and T , as shown on Fig. 2, thus canceling the
denominator in (18):

~n ′ · ∇ ′u(R)× ~q = G(R). (20)

The second term on the right-hand side of (15) is equal to zero, as vector ~q can be
expressed as a gradient of the cylindrical angle ϕ, shown on Fig. 2. As curl of any gradient
vector field is equal to zero at any point except at point ρ = 0, this leads to ∇ ′ × ~q = 0, and
thus corroborates the expression (12). However, when ρ = 0, the point can be excluded from
the surface integrals I1 and I2, as it will be shown later.

3 CONVERTING SURFACE INTEGRAL
∫
NiGdS TO CONTOUR INTEGRAL

To convert surface integral (2) to contour integral the shape function formulation (9) is used
to write the integrand NiG as:

Ni(~r
′, ~r )G(R) = ~n ′ ·G(R) (~r ′ − ~r )× ~ai + bi(~r )G(R). (21)

Inserting (12) and (17) in (21), followed by some mathematical manipulation, the
following is obtained:

Ni(~r
′, ~r )G(R) = ~n ′ · ∇ ′ × [u(R) (~ai + bi(~r )~q )] . (22)

After inserting (22) in (2) followed by application of Stokes’ theorem yields:

I1(~r ) =

∫
S∆

dS ′~n ′ · ∇ ′ × [u(R) (~ai + bi(~r )~q )] =

∮
∂S∆

u(R) [~ai + bi(~r )~q ] · d~l ′, (23)

where d~l ′ is the line element along contour ∂S∆.
The integral (23) can be broken into sum of line integrals over triangle edges:

I1(~r ) =

3∑
i=1

∫
ei

u(R) [~ai + bi(~r )~q ] · d~l =

3∑
i=1

Ii1(~r ), (24)

where ei are edges of the triangle shown in Fig. 1 and Ii1 is the line integral along edge ei.
Line integral Ii1 can be evaluated using:

Ii1(~r) =

∫ x2

x1

u(R)

[
~a · ~e ′x − bi(~r )

y ′

x ′2 + y ′2

]
dx ′, (25)

where integration bounds x1 and x2 can be determined using xi = (~ri − ~r ) · ~e ′x, i = 1, 2.
The derivation of (25) is omitted for brevity.

In case when point T is inside the triangle (shown on Fig. 2), we have to exclude the small
area surrounding the point T and solve for the residual using some limiting process, i.e.:

ci = − lim
ε→0

∫ α

0

u(R) [ε~ai · ~eϕ + bi(~r )] dϕ, (26)

where the angle α depends on the location of point T , being α = 2π (T inside the triangle),
α = π (T on the edge), or a part of the circle (when T is in the vertex).
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4 CONVERTING SURFACE INTEGRAL
∫
Ni

∂G
∂~n dS TO CONTOUR INTEGRAL

Integral (3) can be dealt with in a similar manner. The first step, though, is with a little effort,
working out the partial derivative by taking the del operator outside the integral, i.e. (3) can
be written as:

I2(~r ) =

∫
S∆

Ni(~r
′)
∂G(R)

∂~n ′
dS ′ = −~n ′ · ∇

∫
S∆

Ni(~r
′)G(R)dS ′, (27)

where∇G(R) = −∇ ′G(R) have been used.
Inserting (23) in (27), leads to:

I2(~r ) = −~n ′ · ∇
∮
∂S∆

u(R) [~ai + bi(~r )~q ] · d~l ′. (28)

As nabla does not act on primed coordinates, we can write−~n ′ · ∇ under the integral and
then use expressions∇u(R) = −∇ ′u(R) and∇(~q · d~l ′) = −∇ ′(~q · d~l ′ ) to obtain:

I2(~r ) =

∮
∂S∆

[~n ′ · ∇′u(R)] [~ai + bi(~r )~q ] · d~l ′ −
∮
∂S∆

bi(~r )u(R)~n ′ · ∇(~q · d~l ′ )−∮
∂S∆

[~n ′ · ∇bi(~r )] ~q · d~l ′. (29)

It is easily showed that the last term from eqn (29) is equal to zero, since ~n ′ · ∇bi(~r ) =
~n ′ · ~a× ~n ′ = 0.

The same could be also showed for the second integral from eqn (29), although with
somewhat more elaborate work. For the sake of brevity, it is suffice to say that the trick is
to use the fact that vectors ~q and ~n ′ are perpendicular. So, with some clever mathematical
manipulations, integrand could be rearranged so that the following could be used:

~n ′ · ~q = ~n ′ · 1

ρ2
~n ′ × (~r ′ − ~r ) = 0. (30)

This means that (29) is reduced to:

I2(~r ) =

∮
∂S∆

∂u(R)

∂~n ′
[~ai + bi(~r )~q ] · d~l ′, (31)

where we have used ∂u(R)
∂~n ′ = ~n ′ · ∇′u(R).

Integral (31) can be broken down to the sum of the easily solved line integrals over triangle
edges, while in case when point T falls within the triangle, we have to perform additional
computation on the residual term:

di = − lim
ε→0

∫ α

0

∂u(R)

∂~n ′
[ε~ai · ~eϕ+ bi(~r )] dϕ, (32)

that, when ρ = 0 reduces to:

di = −bi(~r )
∂u(|z ′|)
∂z ′

α. (33)

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

100  Boundary Elements and other Mesh Reduction Methods XLI



5 APPLICATION TO INTEGRALS INVOLVING LAPLACE KERNELS
Integrals (24) and (31) have analytical solutions for Laplace and Poisson kernels while the
fundamental solution of the 3D Poisson problem is given by G(R) = 1/4πR.

If the function u(R) is expressed as u(R) = R/4π, the integrand of (24) can be rewritten
in the appropriate form facilitating the conversion into such contour integral having the
analytical solution given as:∫ x2

x1

u(R)~ai · d~l = (~ai · ~e ′x)
x ′R+ (y ′

2
+ z ′

2
) ln (x ′ +R)

8π

∣∣∣∣∣
x2

x1

, (34)

∫ x2

x1

u(R)bi(~r )~q · d~l = − bi(~r )
z ′ arctan

(
x ′z ′

y ′R

)
+ y ′ ln (x ′ +R)

4π

∣∣∣∣∣∣
x2

x1

, (35)

where ~ai and bi(~r) are given in (10) and (11), respectively.
The integral (31), involving normal derivative of u(R), can be similarly rewritten, i.e.

leading to the analytical solution in the form of:∫ x2

x1

∂u(R)

∂~n ′
~ai · d~l = (~ai · ~e ′x)

z ′ ln (x+R)

4π

∣∣∣∣x2

x1

, (36)

∫ x2

x1

∂u(R)

∂~n ′
bi(~r )~q · d~l = − bi(~r )

arctan
(
x ′z ′

y ′R

)
4π

∣∣∣∣∣∣
x2

x1

, (37)

where ~ai and bi(~r) are given in (10) and (11), respectively.

6 COMPUTATION OF INTEGRALS INVOLVING HELMHOLTZ KERNELS
When the differential operator is Helmholtz operator, i.e. when function G(R) satisfies:

∇2G(R) + k2G(R) = −δ(~r, ~r ′) (38)

the fundamental solution is of the form:

G(R) =
e−ikR

4πR
. (39)

From (13) the function u(R) can easily be computed as:

u(R) =

∫
R
e−ikR

4πR
dR = i

e−ikR

4πk
. (40)

The contour integrals (24) and (31) when u(R) is given by (40) do not have analytical
solutions, thus, the standard Gaussian quadrature is necessary to compute the contour
integrals for geometric configurations as shown in Fig. 3. However, in case when y ′ becomes
very small, the number of Gaussian points have to be increased.

The numerical results of the contour integration for several examples as shown in Fig. 3
are given in Table 1. The results obtained using the proposed technique are compared to the
numerical results obtained using the Wolfram Mathematica software.

In order to handle the singularity problem when y ′ → 0, Gauss-Patterson adaptive
quadrature [26] has been used to compute the contour integrals (24) and (31) to machine
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Table 1: Comparison of contour integral results with numerical results from Wolfram
Mathematica software. Number of Gauss points per triangle’s edge N = 20.

Test Integral Mathematica Contour
case Integral∫

N1GdS 0.00528364− j0.000198499 0.00528364− j0.000198499
(a)

∫
N2GdS 0.00528364− j0.000198499 0.00528364− j0.000198499∫
N3GdS 0.00529556− j0.0000995714 0.00529556− j0.0000995714

∫
N1GdS 0.00172243− j0.0284663 0.00172243− j0.0284663

(b)
∫
N2GdS −0.00432864 + j0.0129573 −0.00432864 + j0.0129573∫
N3GdS 0.0051389 + j0.00317481 0.0051389 + j0.00317481

∫
N1GdS 0.0276113− j0.137714 0.0276113− j0.137714

(c)
∫
N2GdS −0.0324167 + j0.00762088 −0.0324167 + j0.00762088∫
N3GdS −0.0744389 + j0.00563727 −0.0744389 + j0.00563727

∫
N1GdS 0.00971219− j0.00284063 0.00971219− j0.00284063

(d)
∫
N2GdS 0.00797566− j0.00559024 0.00797566− j0.00559024∫
N3GdS 0.00854506− j0.00499818 0.00854506− j0.00499818

∫
N1GdS 0.00370118− j0.00108283 0.00370118− j0.00108283

(e)
∫
N2GdS 0.00334767− j0.00171923 0.00334767− j0.00171923∫
N3GdS 0.00367605− j0.00116374 0.00367605− j0.00116374∫
N1GdS −0.0138075− j0.0103983 −0.0138075− j0.0103983

(f)
∫
N2GdS −0.0117517 + j0.00130501 −0.0117517 + j0.00130501∫
N3GdS −0.0148588− j0.00791919 −0.0148588− j0.00791919

Table 2: The number of bisections and the number of evaluation points (EP) for adaptive
Gauss-Patterson numerical integration method (AGP) as function of y ′. The integral
computed is

∫
NiGdS for Helmholtz equation using u(R) given by (40).

Method y ′ Bisections EP

AGP 1× 10−1 0 511
AGP 1× 10−2 6 604
AGP 1× 10−4 20 821
AGP 1× 10−8 52 1061
AGP 1× 10−16 120 2035
AGP 1× 10−32 260 7389

accuracy. As shown in Table 2, the drawback to this approach is the increased number of
bisections when y ′ tends to zero. Also, in some cases one can note the decreasing numbers
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(a) (b) (c)

(d) (e) (f)

Figure 3: Several test examples for integration of
∫
NiG using contour integration. The

integration path is denoted with arrows. Propagation constant is chosen to be
k = 2π

λ = 2π
5 . In (b) and (c) observation point is located at vertex 1.

of bisections. However, the numerical accuracy of the integration procedure converged to
machine accuracy.

7 CONCLUSIONS
In this paper the technique for converting surface integrals containing Green’s function and its
derivative to contour integrals is shown. This conversion to contour integral is possible when
Green’s function is G = G(R) and when indefinite integral

∫
RG(R)dR can be computed

analytically, such as in the case of Helmholtz, Laplace and Poisson type problems. It was
shown that for Poisson and Laplace type of problems this technique yields analytical solutions
for integrals of this type. The advantage of computation of contour integrals to surface
integrals is the possibility to precisely control the accuracy of the numerical computation
of these integrals when the analytical solution is not available. It has been found out that in
the relatively rare cases the number of evaluation points have to be increased if the adaptive
Gauss-Patterson quadrature is used. This issue is expected to be addressed in the future work
within the new scheme for adaptive computation of such integrals.
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