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ABSTRACT 
An iterative boundary element method is proposed to analyze cracks with exact crack face boundary 
conditions in thermoelastic solids. Herein, the crack was opened under external loading, whereupon the 
opened cavity was considered a domain. The boundary element method for the crack-cavity domain 
and the sub-region boundary element method for the outer thermoelastic solid were used iteratively to 
obtain the real deformed crack faces. In this approach, the exact face boundary conditions on crack 
faces were used and the stress intensity factor and thermal flux density intensity factor near the crack 
tip were calculated.
Keywords:  thermoelastic solid, boundary element method, crack, exact boundary conditions, stress 
intensity factor, thermal flux density intensity. 

1  INTRODUCTION 
Thermoelastic solids are sensitive to the presence of cracks, which cause a thermal flux 
concentration and affect the reliability and working life of materials and structures. 
Therefore, fracture problems in thermoelastic solids have attracted much attention [1]–[8]. 
     Owing to the thermo-mechanical coupling property and the complex crack face boundary 
conditions in thermoelastic solids, it is difficult to find analytical solutions for some fracture 
problems, and thus numerical methods are adopted to study these problems [9]–[12]. Among 
these numerical methods, the boundary element method (BEM) [13], [14] reduces the solving 
dimensions and exhibits high accuracy, and is therefore very efficient to solve fracture 
problems in thermoelastic solids. Prasad et al. have studied several thermoelastic crack 
problems using dual BEM, wherein the stress intensity factors were obtained according to 
the independent J-integral [15]. Ekhlakov et al. have analyzed thermoelastic cracks in 
functionally-graded materials by BEM and have studied the influence that the material 
gradation, thermo-mechanical coupling, crack orientation and thermal shock loading have on 
the fracture behavior [16]. Pasternak has studied the inclined-crack model, edge crack model, 
the two-parallel-crack model and the kinked-crack model in two-dimensional anisotropic 
thermoelastic solids using BEM [17]. Finally, Zhao et al. have studied the extended intensity 
factors of an elliptical crack in isotropic three-dimensional thermoelastic solids [18]. 
     Up to now, studies of thermal crack models have almost entirely been based on thermally-
impermeable or -permeable crack face boundary conditions, but these two boundary 
conditions are too limiting for most cases. Zhong and Kang [19] and Zhong et al. [20] have 
therefore proposed a new partially-thermally-permeable crack model, which demonstrates 
that the crack face boundary conditions of the thermal crack model significantly affect the 
fracture behavior. In the present work, we consider the exact crack face boundary conditions 
for a thermal-medium crack model, and an iterative BEM to solve this nonlinear crack model 
is proposed. The paper is organized as follows: In Section 2, the basic equations for 
thermoelastic solids are given. In Section 3, the iterative BEM is proposed for a central crack 
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model in thermoelastic solids. In Section 4, numerical results are presented to demonstrate 
the relationships between the stress and thermal flux density intensity factors and the external 
mechanical and thermal loadings. Finally, in Section 5 the main conclusions are drawn. 

2  BASIC EQUATIONS 
In the absence of a body force or internal heat source, the governing equations for isotropic 
thermoelastic solids in the Oxz cartesian coordinate system are given by 
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where ij is the stress component and hi is the thermal flux component. The constitutive 
equations are given by [1] 
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where E is the elasticity modulus, G is the shear modulus,  is the Poisson ratio,  is the 
temperature,  is the thermal expansion coefficient and  is the heat conductivity. 
Substituting eqn (2) into eqn (1), the governing equations can be rewritten as 
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     On the outer boundary of the solid, the displacement and surface traction boundary 
conditions are given by 
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where u and t represent the boundaries with prescribed displacements and prescribed 
tractions, respectively. For the temperature field, the boundary conditions are given by 
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where  and q represent the boundary with prescribed temperature and prescribed thermal 

flux density, respectively; , ,i iu t  and q  are the prescribed displacement, traction, 
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temperature and thermal flux density, respectively; and ni is the outward normal vector. Note 
that u + t =  + q = . 

3  BOUNDARY ELEMENT METHOD FOR THERMOELASTIC  
SOLIDS WITH A CENTRAL CRACK 

Consider a thermoelastic plate with a central crack, as shown in Fig. 1. The plate length is 2l 
and height is 2h, and the crack length is 2c. The symmetric mechanical loading p0 and thermal 
loading q0 are applied on the upper and lower surface of the plate, while the crack faces are 
load-free. Under the applied mechanical and thermal loadings, the crack opens and the crack 
cavity c is formed. The boundary of the crack cavity can be expressed as 

 1 2 ,c c c     (6) 

where c1 and c2 are the upper and lower faces of the crack cavity, respectively. Therefore, 
we adopted the sub-region BEM to divide the entire plate into the three domains 1, 2 and 
c, as shown in Fig. 2. The boundaries of 1 and 2 can be expressed as: 
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where the divided regions are shown in Fig. 2. In the cavity of the opening crack, there exists 
only the temperature field, whose governing equation is yet the heat conduction equation, 
given as 
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where  c is the temperature field in the crack cavity. 
 

 

Figure 1:   Schematic of a central crack in a thermoelastic rectangular plate under 
mechanical loading p0 and thermal loading q0. 
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Figure 2:   Schematic of the sub-regions of the central crack model and discretization of the 
involved boundaries. 

     The boundary conditions are given as follows: 

(1) On the outer boundaries B1, B2, B3, S1, S2 and S3, the boundary conditions are 
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where ti (i = x, z) denotes the mechanical traction, p0 is the external mechanical 
loading along the z-direction, and q0 is the external thermal loading. 

(2)  On the common boundaries 12 and 21 between sub-regions 1 and 2, along the 
x-axis, the boundary conditions are 
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(3)  On the common boundaries 1c and c1 (2c and c2) between sub-regions 1 and 
c (2 and c), the boundary conditions are 

 
1 20, 0,

, ,
c c c c

t t

q q
   

 
   

 

    ( , ) , 1,2.cx z     (11) 

     We note that the thermal boundary conditions on the crack faces described in eqn (11) are 
the exact boundary conditions depending on the deformed crack faces. 

3.1  Iterative approach 

Owing to the existence of a temperature field in the crack cavity, the thermal flux density 
boundary condition on the upper and lower crack surfaces is affected by the deformed crack 
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faces. This problem is a typical nonlinear problem that we propose to solve using an iterative 
BEM, whose iterative approach is described in detail in the following. 

(1) The crack is initially treated as a slit that is considered to be thermally 
impermeable. Thus, the crack face boundary conditions are given by 

 1 20, 0, 0.t t q    (12) 

In this case, only the two regions 1 and 2 remain in the thermoelastic plate. 
Thus, using the sub-region BEM and the boundary conditions in eqns (9), (10), 
and (12), the extended displacement fields (ui

(1), (1)) and a new crack cavity 
region c

(1) are obtained. 
(2) Next, the crack cavity region c

(1) is treated as a single domain and the 
temperatures (1) on the crack faces obtained in Step (1) are taken as the boundary 
conditions. Using the single-domain BEM, new values of the thermal flux density 
q(1) on the crack face are obtained.  

(3) Next, the crack is again treated as a slit. Taking the extended stress fields q(1) on 
the crack faces obtained in Step (2) as the new boundary conditions and 
combining them with the boundary conditions in eqns (9) and (10), we obtain the 
extended displacement fields (ui

(2), (2)) and a new crack cavity region c
(2). 

(4) Steps (2) and (3) are repeated until the preset precision for the thermal flux density 
on the crack face is satisfied at the kth step, such that 
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where  is a preset error value. In the present paper,  = 0.01%. 
     With this iterative method, we ultimately obtain the exact thermal boundary condition on 
the crack face and the size of the crack cavity. Simultaneously, the displacement field, 
temperature field, stress field and thermal flux density field of thermal-medium crack model 
under exact crack face boundary conditions are obtained. 

3.2  Sub-region BEM for a crack in a thermoelastic solid 

Employing the fundamental solutions and the Somigliana identity, the extended displacement 
boundary integral equations for the three sub-regions are established.  
     For thermoelastic solids, when the temperature in the solid is changed, an initial strain 
occurs owing to the thermal expansion. This initial strain is given by 

 0 ,jk jkT     (14) 

where  denotes the thermal expansion coefficient, T denotes the variations in temperature 
and  denotes the Kronecker delta function. Eqn (14) indicates that the temperature induces 
a purely volume expansion. Further, the initial stress caused by the temperature field in the 
solids is given by 

 0 1
2 .
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For the sub-regions 1 and 2, the fundamental solutions are identical. Regarding the initial 
temperature stress as the body force, the extended displacement boundary integral equation 
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for an arbitrary point Y in a thermal solid with a body force fj within domain 1 or 2 can be 
written as 

              * * *, , ,i ij j ij j ij ju Y U x Y t x T x Y u x d x U x Y f d
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where x is the field point; j=1,2,3; u3=; t3=q; f1=f2=0 and f3=ij
0; =1 or 2; and =1 or 

2. Finally, Uij
* and Tij

* are the extended displacement and traction matrices of the 
fundamental solutions, which can be expressed as in [21] 
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where xi and Yi denote the coordinates of the field point and source point, respectively; and 
the radius vector r


 between the source point and field point is defined as 
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     When Y approaches the boundary Γ, eqn (16) becomes 
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where Cij is the boundary coefficient matrix wherein Cij=ij/2 when the boundary is smooth. 
Employing the Gauss divergence theorem, the domain integral in eqn (19) can be transformed 
into the boundary integral 
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where (x)/n denotes the normal temperature gradients of the temperature (x) on the 
boundary . Further, Ri(x,Y) and Qi(x,Y) are given by [21] 
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whereupon the extended displacement boundary integral equation can be given by 
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     For the sub-regions c, eqn (8) can be treated as a potential problem, whereby the integral 
equation for the temperature of any arbitrary point Y within the crack cavity c is given by 
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     When Y approaches the boundary Γ, eqn (23) becomes 
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     When the crack is treated as a slit, only two sub-regions exist; i.e., 1 and 2. Using linear 
elements to discretize the boundaries of 1 and 2, the total linear system of algebraic 
equations for all nodes on the boundaries 1 and 2 can be written in the matrix form 
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where u(1) and u(2) denote the extended displacement fields (ui, ) of 1 and 2, respectively; 
and t(1) and t(2) denote the extended stress fields (ij, hi) of 1 and 2, respectively. The 
compatibility conditions are given as 

 (1) (2) (1) (2), ,cb cb cb cb  u u t t  (27) 

where ucb
(1) and ucb

(2) denote the displacement fields (ui, ) on the common boundaries of 1 
and 2, respectively; and tcb

(1) and tcb
(2) denote the extended stress fields (ij, hi) of the 

common boundaries of 1 and 2, respectively. Substituting the boundary conditions given 
in eqns (9)–(11) and the compatibility conditions given in eqn (27) into eqn (26), the 
unknown extended displacements (ui, ) and the extended stress fields (ij, hi) on the 
boundaries 1, 2 and common boundaries 12 (21) can be obtained. 
     Similarly, in the crack cavity c, the total linear system of algebraic equations for all 
nodes on the crack face can be written in the matrix form 

 ,c cHθ = Gh  (28) 

where c and hc respectively denote the temperature fields and the thermal flux density fields 
in the crack cavity c. Substituting the boundary conditions given in eqn (11) into eqn (28), 
the unknown temperature field  and the thermal flux density h in the crack cavity c are 
obtained. 

4   NUMERICAL ANALYSIS: A CENTRAL CRACK IN A RECTANGULAR 
THERMOELASTIC PLATE 

The material of the plate was ZrO2 ceramic, with the material constants 

 
9 2

6

200 10 N/m , 0.29,

10.6 10 m/K, =4.2W/(m.K).

E 
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     The iterative sub-region BEM proposed in Section 3 was used to analyze the central crack 
model. 
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4.1  Validation of the iterative BEM 

The plate dimensions used were a height 2h=100 mm and width 2l=100 mm, and a central 
crack length 2c=10 mm. Further, the extended external loadings were  

 2
0 0100MPa, 0.1W/m .p q   (30) 

     In this case, we assumed that the central crack in the thermal plate was thermally 
impermeable, the iteration times satisfying the accuracy requirement in eqn (13) are ten. The 
calculated crack opening displacement (COD) and the temperature across the crack face were 
in good agreement with those obtained by the finite element method (FEM), as shown in Figs 
3 and 4. This comparison of the results demonstrates that the proposed method is effective 
for fracture analysis of thermoelastic solids with a central crack. 
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Figure 3:    Normalized crack opening displacement (COD) w/c across the crack face under 
a mechanical loading of p0=100 MPa and thermal loading of q0=0.1 W/m2. 
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Figure 4:    Temperature  across the crack face under a mechanical loading of p0=100 MPa 
and thermal loading of q0=0.1 W/m2. 
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4.2  Effect of crack length on the extended displacements of a central crack in a 
thermoelastic solid 

As an example, we studied the effect of the crack size on the COD and the temperature across 
the crack face. In this case, the ratio of the plate height to crack length h/c was fixed as 10, 
the crack face possessed impermeable boundary conditions, and the external mechanical 
loading p0 and thermal loading q0 were the same as given in eqn (30).  
     The COD and temperature across the crack face are plotted in Figs 5 and 6, respectively. 
It can be seen that, with increasing crack length, the COD increased while the temperature 
across the crack face decreased. 
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Figure 5:    Normalized crack opening displacement (COD) w/c across the crack face with 
various l/c and fixed h/c=10 under a mechanical loading of p0=100 MPa and 
thermal loading of q0=0.1 W/m2. 
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Figure 6:    Temperature  across the crack face with various l/c and fixed h/c=10 under a 
mechanical loading of p0=100 MPa and thermal loading of q0=0.1 W/m2. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLI  59



4.3  Effects of extended loads on the extended stress intensity factors of a central crack in a 
thermoelastic solid 

Using the proposed iterative BEM, the crack opening displacements and temperatures near 
the crack tip were obtained. Then, the stress intensity factor KI and thermal flux density 
intensity factor KT near the crack tip were calculated using [19] 

 I T2 0 0

2 2
lim , lim , ( , ),

48(1 )

E
K w K w =w w =

 

      
 

   

 
    


 (31) 

where  is the distance between a point on the crack face and the crack tip; ‖w‖ is the 
displacement discontinuity across the crack face; and ‖‖ is the temperature discontinuity 
across the crack face; whose subscripts “+” and “−” denote the upper and lower crack faces, 
respectively. In our numerical calculation, ‖w‖ and ‖‖ were obtained by fitting the 
corresponding values for two elements close to the crack tip, and the normalized stress 
intensity factor and heat flux density intensity factor are given by 

 I I 0 T T 0/ ( ), / ( ).F K p c F K q c    (32) 

In the following calculation, the geometric parameters h/c and l/c were fixed as 10. The crack 
face boundary conditions are the exact boundary condition as in eqn (11) and the external 
mechanical loading p0 and thermal loading q0 are the same as that in eqn. (30). 
     It can be observed that the normalized stress intensity factors FI and thermal flux intensity 
factor FT remain the same with the increase of the normalized mechanical loading p/p0, as 
shown in Fig. 7. 
     It is found that the normalized thermal flux intensity factor FT remains constant with 
increasing normalized thermal loading q/q0. The normalized stress intensity factor FI, 
however, increases with increasing normalized thermal loading q/q0, as shown in Fig. 8.  
     We can see in Figs 7 and 8 that a one-way coupling property exists in the thermoelastic 
solids. Specifically, for the thermoelastic solids, the mechanical characteristic does not affect 
the thermal characteristic, while the thermal characteristic does affect the mechanical 
characteristic. 
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Figure 7:    Normalized intensity factors FI and FT versus normalized p/p0 with h=l=10c, 
under a mechanical loading of p0=100 MPa and thermal loading of q0=0.1 W/m2. 
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Figure 8:    Normalized intensity factors FI and FT versus normalized q/q0 with h=l=10c, 
under a mechanical loading of p0=100 MPa and thermal loading of q0=0.1 W/m2. 

5  CONCLUSIONS 
An iterative BEM was proposed to analyze the cracking in thermoelastic solids using exact 
crack boundary conditions. The proposed method was validated by comparing the COD and 
temperature across the crack face with the results obtained by FEM. Numerical results 
demonstrated that the crack size greatly influences the COD and temperature across the crack 
face and that a one-way mechanical–thermal coupling property exists in thermoelastic solids. 
The proposed iterative BEM is an efficient approach for solving the fracture problem of 
thermoelastic solids. 

ACKNOWLEDGEMENT 
The work was supported by the National Natural Science Foundation of China (Nos. 
11572289, 11702251). 

REFERENCES 
[1] Nowacki, W., Thermoelasticity, Pergamon Press: New York, 1962. 
[2] Khaund, A.K., Krstic, V.D. & Nicholson, P.S., Influence of elastic and thermal 

mismatch on the local crack-driving force in brittle composites. Journal of Materials 
Science, 12(11), pp. 2269–2273, 1977. DOI: 10.1007/bf00552248. 

[3] Noda, N. & Jin, Z.H., Thermal stress intensity factors for a crack in a strip of a 
functionally gradient material. International Journal of Solids and Structures, 30(8), 
pp. 1039–1056, 1993. DOI: 10.1016/0020-7683(93)90002-o. 

[4] Erdogan, F. & Wu, B.H., Crack problems in FGM layers under thermal stresses. 
Journal of Thermal Stresses, 19(3), pp. 237–265, 1996.  
DOI: 10.1080/01495739608946172. 

[5] Chen, J., Soh, A.K., Liu, J. & Liu, Z., Thermal fracture analysis of a functionally 
graded orthotropic strip with a crack. International Journal of Mechanics and 
Materials in Design, 1(2), pp. 131–141, 2004. 

[6] Chen, Z.T. & Hu, K.Q., Thermo-elastic analysis of a cracked half-plane under a 
thermal shock impact using the hyperbolic heat conduction theory. Journal of Thermal 
Stresses, 35(4), pp. 342–362, 2012. DOI: 10.1080/01495739.2012.663685. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLI  61



[7] Dang, H.Y., Zhao, M.H., Fan, C.Y. & Chen, Z.T., Analysis of an arbitrarily shaped 
interface crack in a three-dimensional isotropic thermal elastic bi-material. Part 2: 
Numerical method. International Journal of Solids and Structures, 99, pp. 48–56, 
2016. DOI: 10.1016/j.ijsolstr.2016.08.007. 

[8] Wang, P., Wang, K.F., Wang, B.L. & Cui, Y.J., Effective thermoelectric conversion 
properties of thermoelectric composites containing a crack/hole. Composite 
Structures, 191, pp. 180–189, 2018. DOI: 10.1016/j.compstruct.2018.02.049. 

[9] Yu, X.M., Shah, K. & Mukherjee, S., Thermoelastic fracture mechanics with 
regularized hypersingular boundary integral equations. Engineering Analysis with 
Boundary Elements, 23(1), pp. 89–96, 1999. DOI: 10.1016/s0955-7997(98)00064-2. 

[10] Shiah, Y.C. & Tan, C.L., Exact boundary integral transformation of the thermoelastic 
domain integral in BEM for general 2D anisotropic elasticity. Computational 
Mechanics, 23(1), pp. 87–96, 1999. DOI: 10.1007/s004660050387. 

[11] Duflot, M., The extended finite element method in thermoelastic fracture mechanics. 
International Journal for Numerical Methods in Engineering, 74(5), pp. 827–847, 
2008. DOI: 10.1002/nme.2197. 

[12] Sladek, J., Sladek, V., Solek, P. & Zhang, C.Z., Two- and three-dimensional transient 
thermoelastic analysis by the MLPG method. Computer Modeling in Engineering and 
Sciences, 47(1), pp. 61–95, 2009. 

[13] Brebbia, C.A., The Boundary Element Method for Engineers, Halsted Press: New 
York, 1978. 

[14] Portela, A., Aliabadi, M.H. & Rooke, D.P., The dual boundary element method: 
Effective implementation for crack problems. International Journal for Numerical 
Methods in Engineering, 33(6), pp. 1269–1287, 2010.  
DOI: 10.1002/nme.1620330611. 

[15] Prasad, N.N.V., Aliabadi, M.H. & Rooke, D.P., The dual boundary element method 
for thermoelastic crack problems. International Journal of Fracture, 33(3), pp. 255–
272, 1994. DOI: 10.1007/bf00042588. 

[16] Ekhlakov, A., Khay, O., Zhang, C., Sladek, J., Sladek, V. & Gao, X.W., Thermoelastic 
crack analysis in functionally graded materials and structures by a BEM. Fatigue and 
Fracture of Engineering Materials and Structures, 35(8), pp. 742–766, 2012.  
DOI: 10.1111/j.1460-2695.2011.01657.x. 

[17] Pasternak, I., Boundary integral equations and the boundary element method for 
fracture mechanics analysis in 2D anisotropic thermoelasticity. Engineering Analysis 
with Boundary Elements, 36(12), pp. 1931–1941, 2012. 
DOI: 10.1016/j.enganabound.2012.07.007. 

[18] Zhao, M.H., Dang, H.Y., Li, Y., Fan, C.Y. & Xu, G.T., Displacement and temperature 
discontinuity boundary integral equation and boundary element method for analysis of 
cracks in three-dimensional isotropic thermoelastic media. International Journal of 
Solids and Structures, 81, pp. 179–187, 2016. DOI: 10.1016/j.ijsolstr.2015.11.024. 

[19] Zhong, X.C. & Kang, Y.L., A thermal-medium crack model. Mechanics of Materials, 
51, pp. 110–117, 2012. DOI: 10.1016/j.mechmat.2012.04.013. 

[20] Zhong, X.C., Long, X.Y. & Zhang, L.H., An extended thermal-medium crack model. 
Applied Mathematical Modelling, 56, pp. 202–216, 2018.  
DOI: 10.1016/j.apm.2017.11.016. 

[21] Gao, X.W., Boundary element analysis in thermoelasticity with and without internal 
cells. International Journal for Numerical Methods in Engineering, 57(7), pp. 975–
990, 2003. DOI: 10.1002/nme.715. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

62  Boundary Elements and other Mesh Reduction Methods XLI




