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ABSTRACT 
The mechanical properties of plain concretes are improved with the introduction of steel fibers like the 
material toughness along with limited crack widths. Numerical investigations on fiber reinforced 
concrete specimens use models for cohesive crack propagation in quasi-brittle materials. The present 
crack propagation analysis considered the single-edge notched beam under the three-point bending test. 
The material softening modeling used the cohesive law with two straight lines within a pure mode I for 
the crack growth. The dual boundary element method employed quadratic elements and the tangential 
differential operator in the traction boundary integral equation. The introduction of the constitutive law 
in the system of equations allowed the direct computation of the cohesive forces at each incremental 
loading step. The boundary element mesh employed continuous elements along the crack surface and 
the results obtained are compared with those available in the literature. 
Keywords:  crack analysis, cohesive model, fiber reinforced concrete, dual boundary element model, 
tangential differential operator. 

1  INTRODUCTION 
The improvement of the mechanical properties in plain concrete due to the introduction of 
steel fibers has motivated the increase of structural applications using this solution. 
Furthermore, the combination of different types of fibers has extended the range of the 
applications with fiber reinforced concrete beyond the massive elements. The subsequent 
researches along the years have demonstrated the fictitious crack model is efficient to 
describe the tensile behavior of fiber-reinforced concrete (FRC) in the numerical 
implementations [1]–[3]. The stress concentration in front of the notch tip in concrete 
specimens with an initial crack develops the damage zone with micro-cracks. In spite of the 
crack surfaces are not completely separated in this region, the partly destroyed material is 
still able to transfer stress across the crack trace behind the fictitious crack tip, which is called 
the fictitious crack or the cohesive zone, as shown in Fig. 1. The fictitious crack model 
considers the linear elastic behavior before the crack initiation and the stresses along the 
cohesive zone are taken to be a function of the crack opening. The linear function was 
employed in the beginning for the relation stress-crack opening to describe the softening in 
plain concrete specimens within a pure mode I for the crack growth. Peterson was the first to 
suggest using the function with two straight lines [4] for analysis using plain concrete 
specimens. Nevertheless, the relation for stress-crack opening function representing the 
tensile behavior of FRC requires at least a function using two straight lines. The bending 
failure in concrete beams can be modeled with the development of the fictitious crack in an 
elastic layer with the thickness proportional to the beam depth [5]. An assessment of the 
flexural strengths of fiber-reinforced composites and the influence of the fiber bridging on 
the overall structural behavior were studied in [6], [7], Sousa and Gettu [8], and Slowik et al. 
[9] determined piecewise linear cohesive models for FRC by minimizing the difference 
between numerical simulation and experimental test results. 
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Figure 1:  Crack in cohesive material: Stress distribution and fracture mode I. 

     Several numerical methods besides the FEM have been used to perform crack analyses. 
The dual boundary element method (DBEM) is one of the most widely used due to its 
accuracy in computation of the stress intensity factors and the simplicity of adding more 
elements for crack propagation [10]. The crack analyses for cohesive materials were studied 
with the DBEM by Saleh and Aliabadi [11], [12], with the Galerkin multizone BEM by Chen 
et al. [13] and with the displacement discontinuity BEM by Gospodinov [14]. Karlis et al. 
employed the two dimensional gradient elasticity for crack analyses with the BEM in [15], 
and Leonel and Venturini used the tangent operator in the non-linear analyses with the BEM 
for crack propagation in quasi-brittle materials in [16]. Tavara et al. performed a BEM 
analysis of crack propagation along the fiber–matrix interface of laminates using a linear 
elastic–brittle interface model in [17]. Trinh et al. employed the fast multipole symmetric 
Galerkin BEM to solve multizone and multicrack problems in [18], and Benedetti and 
Aliabadi employed the BEM in multiscale modeling for polycrystalline materials to analyze 
material degradation and fracture in [19]. 
     The DBEM is adopted here with the strong singularity of the traction boundary integral 
equation (BIE) reduced with the tangential differential operator (TDO). The TDO, in 
conjunction with integration by parts, is a technique to reduce the order of singularity in the 
integrand kernels of BIEs using Kelvin-type fundamental solutions, which is usually referred 
as the hypersingular kernel. The TDO was first used by Kupradze [20], and by Sladek and 
Sladek [21] in the solution for a curved crack. Regularized formulations with TDO for 
gradients in potential problems, and in stress BIEs for elasticity problems were shown by 
Bonnet in [22]. The non-conformal interpolations require an additional care in the numerical 
implementations for the TDO, as explained to the traction BIEs of elasticity for two- and 
three-dimensional problems in [23], [24], and in the BIE for stresses of the plate bending 
using Reissner and Mindlin models [25]. 

2  DUAL BOUNDARY INTEGRAL EQUATIONS FOR COHESIVE MATERIALS 
A single domain is considered in the solution of general mixed-mode crack problems with 
the DBEM. The displacement and traction BIEs are used and respectively applied in each 
one of the crack surfaces. Although the integration path is still the same for coincident points 
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on crack surfaces, the respective boundary integral equations are distinct. The collocation 
point needed to perform the traction BIE and the strategy used to treat improper integrals are 
the key features of this formulation. The displacement and traction BIEs for the DBEM are 
next written: 
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where Uij(xʹ, x) and Tij(xʹ, x) are the displacement and traction, respectively, in the direction 
j at boundary point x due to a singular load in the direction i at the collocation point xʹ based 
on the Kelvin solution for two-dimensional problems, ui(x) and ti(x) are the displacement and 
traction at boundary point x, respectively, na(xʹ) is the direction cosine of the outward normal 
at collocation point xʹ. Cakim is the Hooke tensor for an isotropic material, ibj is the stress bj 
at boundary point x due to a singular load in the direction i at collocation point xʹ,  is the 
shear modulus, ν is the Poisson ratio, ij is the Kronecker delta and Dbm( ) is the tangential 
operator. 
     The displacement BIE, eqn (1), has a 1/r singularity and a logarithmic singularity in the 
integrand kernels at the right and left members, respectively, when the field point approaches 
the collocation point. The introduction of TDO in the first integral of the right member of the 
traction BIE, eqn (2), reduced the strong singularity and 1/r singularities result in both 
integrand kernels. The continuity requirements should be satisfied at the positions of the 
collocation points for both BIEs. Positions in the interior of the boundary element satisfy the 
continuity requirements for both BIEs whereas positions at the ends of continuous elements 
can only be used for the displacement BIE. 
     The surfaces of the crack region are connected by the cohesive material in the cohesive 
zone (Fig. 1). Subsequent loadings increase the separation between these points and 
eventually lead to cracking. The stress-crack opening curve for the cohesive zone to represent 
the characteristics of the tensile behavior of FRC uses the function with two straight lines in 
this study. This function is shown in Fig. 2, where ft is the tensile strength, and wc is the 
maximum widening of the fracture zone when it is still able to transfer stress. The breaking 
point value is defined in terms of the opening value (w1) at the corresponding value for the 
tensile strength (f1) of the normal traction: 
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,                            (3) 

     A finite domain with the boundary line e and containing a crack with the cohesive zone 
is shown in Fig. 3. The region without the cohesive material is represented by 1 and 4 on  
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Figure 2:  Stress-crack opening function using with two straight lines. 

 

Figure 3:  Finite domain containing a crack. 

each crack surface whereas 2 and 3 are on each crack surface of the region containing 
cohesive material (cohesive zone). The normal tractions in the cohesive zone connect the 
crack surfaces and have opposite signs with equal magnitude, i.e. t3

j on the crack surface 3 
is equal to -t2

j on the crack surface 2. This condition is used to simplify the equations of 
DBEM for this problem. 

1
2

𝑢௜ሺ𝑥′ሻ ൅ න 𝑇௜௝ሺ𝑥ᇱ, 𝑥ሻ𝑢௝ሺ𝑥ሻ𝑑Γሺ𝑥ሻ
୻

ൌ න 𝑈௜௝ሺ𝑥ᇱ, 𝑥ሻ𝑡௝ሺ𝑥ሻ𝑑Γሺ𝑥ሻ
୻೐

 

൅ න 𝑈௜௝ሺ𝑥ᇱ, 𝑥ሻ𝑡௝
ଶሺ𝑥ሻ𝑑Γሺ𝑥ሻ

୻మ

െ න 𝑈௜௝ሺ𝑥ᇱ, 𝑥ሻ𝑡௝
ଶሺ𝑥ሻ𝑑Γሺ𝑥ሻ

୻య

,                          (4) 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

42  Boundary Elements and other Mesh Reduction Methods XLI



1
2

𝑡௞ሺ𝑥ᇱሻ ൌ 𝑛௔ሺ𝑥ᇱሻ ቨ𝐶௔௞௜௠ න 𝜎௜௕௝ሺ𝑥ᇱ, 𝑥ሻ𝐷௠௕ൣ𝑢௝ሺ𝑥ሻ൧𝑑Γሺ𝑥ሻ
୻

െ න 𝜎௝௔௞ሺ𝑥ᇱ, 𝑥ሻ𝑡௝ሺ𝑥ሻ𝑑Γሺ𝑥ሻ
୻೐

ቩ  

െ𝑛௔ሺ𝑥ᇱሻ ׬ 𝜎௝௔௞ሺ𝑥ᇱ, 𝑥ሻ𝑡௝
ଶሺ𝑥ሻ𝑑Γሺ𝑥ሻ

୻మ
൅ 𝑛௔ሺ𝑥ᇱሻ ׬ 𝜎௝௔௞ሺ𝑥ᇱ, 𝑥ሻ𝑡௝

ଶሺ𝑥ሻ𝑑Γሺ𝑥ሻ.୻య
           (5) 

     The traction in the direction j on the crack surface 2 within the cohesive zone (t2
j) 

appeared in both integrals performed on crack surfaces 2 and 3 in eqns (4) and (5) because 
the traction t3

j is equal to -t2
j in the cohesive zone. The numerical implementation in the 

present study employed eqns (4) and (5), which is different to the formulation used in [26], 
[27]. 
     The crack propagation is directly related to the maximum principal stress, which has to be 
always normal to the crack surfaces, and the extension is such that the maximum principal 
stress at the new tip position is equal to the critical ft value during continued loading. The 
beam in the three-point bending test is considered as a generalized plane stress problem and 
the maximum principal stress is obtained according to following expression: 
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ଶ൯.                                (6) 

3  NUMERICAL IMPLEMENTATION 
The system of equations obtained from eqns (4) and (5) is given next with the unknown 
values including the tractions in the cohesive zone (t2). The additional equation in the system 
of equation required to the solution corresponds to the cohesive law. The tractions in the 
cohesive zone are directly obtained at each incremental loading step with this strategy: 
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     Eqn (7) summarizes the system of equations where the dual eqns (4) and (5) are converted 
to submatrices Hij and Gij, and the cohesive law is converted to submatrices A, B and C. The 
indices e, o and z are related to the boundary portions and correspond to the external 
boundary, the open crack boundary and the cohesive zone, respectively. Submatrices A and 
B relate the displacements and tractions in the normal and tangent directions, respectively, 
on the crack surfaces in the cohesive zone according to the constitutive law. The numerical 
algorithm is summarized next, considering the boundary portions shown in Fig. 3 and the 
constitutive law shown in Fig. 2: 

a) Phase 1, t2 < ft. The traction in the normal direction is less the tensile strength (ft), the 
crack surfaces remain jointed, and without relative displacements. Submatrices B and C 
are zero, whereas submatrix A contains direction cosines relating the displacements in 
the directions xi, i.e., the openings in the normal and tangent directions are zero: 

𝑢௜
ଶ𝑛௜

ଶ ൅ 𝑢௜
ଷ𝑛௜

ଷ ൌ 0,                                                       (8) 

𝑢௜
ଶ𝑠௜

ଶ ൅ 𝑢௜
ଷ𝑠௜

ଷ ൌ 0.                                                       (9) 

b) Phase 2, t2 = ft. The traction in the normal direction reaches ft and openings will appear 
in the cohesive zone for subsequent loads. The cohesive law is introduced in lines of 
submatrices B and C to relate openings and tractions in the normal direction. The eqn (8) 
is modified with the first equation of the constitutive law. No tractions appear in the 
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tangent direction, i.e. the eqn (9) is replaced by the condition of tractions in the tangent 
direction equal to zero. The following equations replaces eqns (8) and (9), respectively: 
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ᇱ,                                       (10) 

𝑠௜
ଶ𝑡௜

ଶ ൌ 0.                                                           (11) 

c) Phase 3, t2 = f1. The breaking point is reached when the traction in the normal direction 
is equal to f1. Further openings in the cohesive zone due to subsequent loads will be 
according to the second equation of the constitutive law show in eqn (3). The condition 
for tractions in the tangent direction remains unchanged. The following equation 
replaces eqn (10): 
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ଷሻ െ
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ଶ ൌ െ𝑤௖.                                      (12) 

d) No tractions appear in in the cohesive zone when the critical opening (wc) is reached. It 
means that the tractions (t2

i) at that point on the crack surfaces must be eliminated from 
the system of equations. Eqns (11) and (12) in the corresponding lines of matrices A and 
B are replaced by: 

𝑡ଵ
ଶ ൌ 0,                                                             (13) 

𝑡ଶ
ଶ ൌ 0.                                                             (14) 

     There was built a boundary element code using quadratic boundary elements and based in 
eqns (4) and (5). Quadratic shape functions were employed for the isoparametric boundary 
elements, with collocation points always placed on the boundary. The same mapping function 
was used for conformal and non-conformal interpolations, i.e., nodes at the ends of the 
quadratic elements remained at the ends when discontinuous elements were employed. The 
collocation points for the displacement BIE were positioned at element nodes in conformal 
interpolations (ξ’= -1 and ξ’= 0) and shifted to the interior of boundary elements in the case 
of non-conformal interpolations (ξ’= 0.67, and ξ’= 0). In contrast, to satisfy the continuity 
requirements for the traction BIE, collocation points for the traction BIE were always 
positioned inside boundary elements for both interpolation types, i.e. (ξ’= 0.67) for 
conformal interpolations and (ξ’= 0.67, and ξ’= 0) for non-conformal interpolation. This 
strategy for the positions of collocation points in the DBEM was discussed in [28]. The 
singularity subtraction [29] and the transformation of variable technique [30] were employed 
for the Cauchy and weak-type singularity, respectively, when integrations were performed 
on elements containing the collocation points. The standard Gauss–Legendre scheme was 
employed for integrations on elements not containing the collocation points. 

4  NUMERICAL RESULTS 
Experimental and numerical analyses for plain concrete were performed in [4] using the 
notched beam under the three-point bending test shown in Fig. 4. This case was studied in 
[27] and it is repeated here because the formulation and the computer code were changed. 
The depth of the beam (d) is 0.2 m, the width is 0.05 m, and the length (l) is 2.0 m. The 
adopted ratio between notched depth and beam depth (a/d) was 0.5. The Poisson’s ratio (v) 
was 0.2 and the Table 1 presents the properties used in the analysis of the crack propagation. 
Peterson [4] presented results for crack propagation obtained experimentally for two values  
 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

44  Boundary Elements and other Mesh Reduction Methods XLI



 

Figure 4:  The notched beam subjected to the three-point bending test in [4]. 

Table 1:  Mechanical properties according to the constitutive laws in [4]. 

-w curve 
Gf 

(Nm-1)
ft 

(MPa)
f1 

(MPa)
wc 

(mm)
w1 

(mm) 
Ec 

(MPa 
One straight line (SL) 124 3.33 – 0.07450 – 30,000 
Two straight lines (C) 124 3.33 1.11 0.13400 0.02979 30,000 

 

 

Figure 5:  Comparison between the results obtained and those in [4] by Peterson. 

of fracture energy (Gf): 115 Nm-1 and 137 Nm-1. Experimental results were compared [4] 
with those obtained from a numerical analysis with the FEM using 124 Nm-1 for Gf, which 
was the median value of the fracture energy values of the experiments. Two constitutive laws 
were considered in the numerical analyses [4]: a) Straight line and b) Two straight lines. 
     The comparison between the experimental and numerical results presented in [4] with 
those obtained with the present formulation is shown in Fig. 5. There were included results 
obtained with the present formulation when one straight line was used because the code built 
for the constitutive law with two straight lines can be simplified to that with one straight line. 
The results obtained matched those obtained by Peterson [4] and the behavior of the present 
formulation was stable in the post-peak softening, as shown by the blue and green lines in 
Fig. 5. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 122, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLI  45



     The results obtained in analyses with FRC are compared with those presented in [31]. Fig. 
6 presents the specimens used in [31], which the aspect ratio is different to that in Fig 4. The 
depth of the beam (d) is 125 mm, the width (b) is 80 mm, the ratio between notched depth 
and beam depth (a/d) is 0.3333, and the Poisson’s ratio (v) is 0.2. Table 2 presents the 
properties used in [31]. 
     At the end of the crack propagation, there were employed 122 quadratic boundary 
elements (231 boundary nodes) with two boundary nodes placed at each corner and at the 
fictitious crack tip. The relative values of the peak load and the deflection were considered 
in Fig. 7 to show the difference between values obtained with SFRC specimens to that with 
plain concrete. The similar pre-peak behavior with respect to the plain concrete is shown in 
Fig. 7 whereas the comparison of the post-peak softening points out to the higher ductility 
for the fiber-reinforced specimens. The peak values for loads as well as the limit load after 
the softening are similar to those presented in [31]. 

5  CONCLUSIONS 
The results obtained in the crack propagation analyses with the present DBEM formulation 
matched those in the literature. The meshes on the crack surfaces employed continuous 
quadratic boundary elements. The present code is different to that used in [26], [27], which 
employed linear boundary elements and considered different DBEM equations. Furthermore, 
the formulation using eqns (4) and (5) was stable when the constitutive law employed two 
straight lines with reference to that presented in [27] without reducing or changing benefits 
on the direct computation of the cohesive forces at each incremental loading step. 
 

 

Figure 6:  The notched beam subjected to the three-point bending test in [31]. 

Table 2:  Mechanical properties used in [31]. 

-w curve 
Gf 

(Nm-1)
ft 

(MPa)
f1 

(MPa)
wc 

(mm)
w1 

(mm)
Ec 

(MPa 
Plain concrete 72 2.81 0.55 0.18 0.016 25,127 
SFRC – 1 3,160 2.77 0.9 6.9 0.04 36,162 
SFRC – 2 3,878 2.77 1.52 5.03 0.04 36,162 
Micro – FRC 730 2.81 0.47 3.0 0.0175 25,127 
Macro – FRC 22,520 2.81 0.9 50.0 0.014 25,127 
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Figure 7:  Results obtained using mechanical properties from Table 2 [31]. 
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