
A direct boundary element approach for the
numerical simulation of finite mobility ratio
immiscible displacement in a Hele-Shaw cell

S. Jackson, D. Stevens, H. Power & D. Giddings
Faculty of Engineering, Division of Energy and Sustainability,
University of Nottingham, UK

Abstract

In this work, the interaction between two immiscible fluids with a finite mobility is
investigated numerically in a Hele-Shaw cell, simulating conditions found during
the injection and lateral spreading of supercritical CO2 in a deep subsurface
aquifer.

A two-phase numerical method is presented that uses a direct boundary element
approach to compute the normal velocity at the interface between two fluids in a 2-
D Hele-Shaw cell, through the evaluation of a hypersingular integral. The resulting
second kind Fredholm equation is solved numerically using a truncated convergent
Neumann series.

Utilising cubic B-Spline surface geometry and function interpolation, the
numerical scheme exhibits 6th order spatial convergence and a computational
cost that scales with O(N2). This allows the long term non-linear dynamics of
a growing CO2–brine interface to be explored accurately and efficiently, revealing
large differences with previous single-phase models and interface capturing
techniques.
Keywords: boundary element method, viscous fingering, finite mobility ratio, Hele-
Shaw flow, hypersingular integral, interface tracking.

1 Introduction

Viscous fingering occurs during the displacement of a high viscosity fluid by a
low viscosity fluid, in which interfacial instabilities may arise and subsequently
evolve to form complex interface topologies. Perturbations greater than a certain
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wavelength create instabilities along the fluid interface and promote the growth of
long fingers which penetrate into the more viscous fluid.

Since the work of Saffman and Taylor in 1958 [1], there has been extensive
research on viscous fingering occurring in Hele-Shaw cells, where the fluid flows
between two thinly separated plates. The mobility of a fluid within a Hele-Shaw
cell is defined by the cell separation and the viscosity, giving rise to an intrinsic
permeability, analogous to that in porous media flows.

Immiscible displacement is characterised by a large mixing time compared to
flow time [2], with each fluid region having a constant density and viscosity,
leading to discontinuous properties across the sharp interface. One such flow,
and the motivation behind the current work, is the injection of supercritical
CO2 into deep subsurface aquifers containing brine. Here, the injection process
is immiscible, with the mobility ratio between the fluids typically of order 10,
involving high characteristic capillary numbers.

Most previous work in the literature has focussed on flow regimes where
the mobility ratio of the fluids is typically very large, such as gas-oil injection
occurring in enhanced oil recovery. Therefore, most numerical approaches
consider only the external fluid, with an injected fluid of negligible viscosity,
resulting in a single-phase model [3, 4].

Boundary element methods (BEMs) reduce the dimensionality of the problem
by one and provide accurate representation of the surface, explicitly tracking it
through time. In addition to BEMs for single-phase flows, BEMs have also been
applied for two-phase flows, where the viscosity of both fluids is considered,
resulting in a finite mobility ratio. These methods typically solve immiscible
displacement between fluids with high mobility ratio, effectively reducing the
problem to a single-phase approach [3, 5, 6].

Experimental results from [7] and [8], along with numerical results from [9]
and [10] suggest that the basic fingering mechanisms such as shielding, spreading
and tip-splitting that occur in low mobility ratio flows are vastly different to
those in single-phase (or very high mobility ratio) flows. Due to the fingers
possessing significant momentum compared to those in single-phase models,
finger interaction becomes much more prominent and the resulting competition
can lead to coalescence and breaking [10].

To study the interaction processes and the long term evolution of low
mobility ratio flows, a two-phase model is developed based on a direct boundary
element approach first presented in [11]. The two-phase direct boundary element
formulation proposed by Power and Wrobel [11] has not been previously
implemented in the literature. Previous work has focused on indirect methods with
constant boundary elements, or single-phase approaches [11, 12]. In the proposed
method, the hypersingular integral arising from the single integral equation is
evaluated explicitly, resulting in a second kind Fredholm equation, which can
be solved using a truncated convergent Neumann series. The resulting numerical
method allows the effective modelling of a moving supercritical CO2–Brine
interface in a Hele-Shaw cell, using physically realistic mobility ratios.

280  Boundary Elements and Other Mesh Reduction Methods XXXVII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press



2 Mathematical formulation

For the flow between two thinly separated plates in a Hele-Shaw cell, the depth
averaged pressure and two dimensional velocity can be expressed through Darcy’s
law:

~u = −M∇P (1)

∇ · ~u = 0 (2)

Here, M is the fluid mobility, which is related to the plate separation, b, and the
fluid viscosity, µ by:

M =
b2

12µ
(3)

The b2/12 term in the mobility ratio refers to the intrinsic permeability of the Hele-
Shaw cell. With a constant viscosity in each of the two fluid regions, equations (1)
and (2) can be reduced to laplace’s equation:

∇2P i(x) = 0 for every x ∈ Ωi, i = 1, 2 (4)

In the problem domain, low viscosity fluid (such asCO2) occupies the inner region
of the bubble, Ω1. The region external to the bubble, Ω2, is filled with a high
viscosity fluid such as brine. To form a boundary integral equation, the pressure
field can be represented as a sum of the pressures due to an injection potential
source, Q, and a perturbation term, φi:

P i(x) = φi −
Q

2πMi
ln
( r
a

)
for x ∈ Ωi (5)

In equation (5), r is the radial distance from the collocation point, x, to the source
point located inside the injected bubble and a is the initial unperturbed radius of
the injected fluid. At a boundary point, ξ on the fluid interface, S, between Ω1 and
Ω2, there are two matching conditions that must be met by the advancing interface.
Firstly, continuity of normal velocities:

q = M1
∂φ1
∂n

= M2
∂φ2
∂n

(6)

Secondly, the pressure jump across the interface due to the surface tension, γ:

φ1 − φ2 = γ

(
2

b
+ k(ξ)

)
+
Q

2π
ln

(
r(ξ)

a

)(
M2 −M1

M2M1

)
= (M1 +M2) f(ξ)

(7)

In equation (7), the contact angle of the meniscus has been assumed to be zero.
The signed curvature, k(ξ) is considered a continuous function on the interface
surface. Following from the pressure field representation in Equation (5), the
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perturbed pressures, φ1 and φ2 can be expressed in terms of their corresponding
Green’s formulae at the fluid interface [13] using the two dimensional fundamental
solution, φ∗.∫

S∞
φ∗(ξ, y)

∂φ2(y)

∂ny
dSy −

∫
S∞

φ2(y)
∂φ∗(ξ, y)

∂ny
dSy

+

∫
s

φ2(y)
∂φ∗(ξ, y)

∂ny
dSy −

∫
s

φ∗(ξ, y)
∂φ2(y)

∂ny
dSy =

1

2
φ2(ξ)

(8)

∫
s

φ1(y)
∂φ∗(ξ, y)

∂ny
dSy −

∫
s

∂φ1(y)

∂ny
φ∗(ξ, y)dSy = −1

2
φ1(ξ) (9)

The external boundary at infinity in equation (8) can be evaluated asymptotically,
considering the perturbation flux to approach zero as the radial distance from the
source approaches infinity [14]. To combine the interior and exterior boundary
integral equations (8) and (9) to produce a two-phase model applicable in both
domains, the limiting value of the normal derivatives must be taken. Subtracting
the resulting equations and using the matching conditions (6) and (7), the following
second kind Fredholm integral equation can be formed [11].

−1

2
q(ξ) +

(
1− β
β + 1

)∫
s

K(y, ξ)q(y)dSy = g(ξ) (10)

Here, β is the ratio of mobilities between the two fluids, M1/M2. The regular
kernel, K(y, ξ) in equation (10) is the normal derivative of the 2-D fundamental
solution with respect to ξ. The non-homogeneous boundary term is given by the
following hypersingular integral.

g(ξ) = M1M2

∫
s

f(y)
∂K(y, ξ)

∂ny
dSy = M1M2

∫
s

Vi(ξ, y)Na(ξ)Jmdξ (11)

The second kind Fredholm equation in (10) permits an analytical Neumann series
solution (for more details see [11]). Equation (10) can be solved using a convergent
series for q, as long as 0 ≤ β < ∞ [11]. The series can be simplified by taking
λ = (β−1)

(1−β) , using a discrete number of terms, m, to truncate the solution of
equation (10).

q(ξ) = q0(ξ) + λq1(ξ) + · · ·+ λmqm(ξ) (12)

Successive terms in the series (12 are calculated recursively using equation (10).
After convergence of the series, the movement of the interface is calculated via
a forward Euler time stepping approach, where ∆Ln(ξ) represents the distance
moved by a boundary point in a single time-step:

∆Ln(ξ)

∆t
= q(ξ) +

Qxi(ξ)ni(ξ)

2πr2
(13)

As the surface grows according to equation (13), the number of nodal points on the
bubble boundary are adaptively increased to maintain a target element size. Cubic
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B-Splines are used for geometrical discretisation and function interpolation, due
to the highly curved surfaces that require accurate representation [15].

The hypersingular integral in (11) is treated using a semi-analytical approach
implemented in [16]. The hypersingular integral in equation (11) becomes an issue
when the field points of integration, y, lie close to a collocation point, ξ. This is
most significant on elements that coincide with the collocation point. To evaluate
the hypersingular integration, firstly, the hypersingular kernel is expanded in terms
of a Laurent power series about a hypersingular point, η [16].

Vi(ξ, y)Na(ξ)Jm = Fi(η, y) =
F−2(η)

(y − η)
2 +

F−1(η)

y − η
+O(1) (14)

The F−2 and F−1 terms depend only on the derivatives of the B-spline shape
functions, Na. By introducing the above power series into the hypersingular
boundary integral equation (11), the limits may be evaluated analytically in order
to remove unbounded terms. This results in a regular integral and analytical
expression.

g(ξ) = M1M2

2∑
m=1

(∫ 1

0

[
Fm(η, y)−

(
Fm−2(η)

(y − η)
2 +

Fm−1(η)

y − η

)]
dy

+ Fm−1(η) ln

∣∣∣∣ 1

βm(η)

∣∣∣∣ sgn(y − η)− Fm−2(η)

[
sgn(y − η)

γm(η)

β2
m(η)

+ 1

])
(15)

In equation (15), the βm and γm terms account for any possible distortion from an
asymmetric neighbourhood around the hypersingular point [16].

3 Numerical performance

Here we examine the numerical performance of the two-phase model using various
small scale simulations. The computational cost of the scheme scales with mN2,
where m is the number of terms in the convergent series, and N is the number
of boundary elements. Therefore, for a fixed m the scheme will exhibit second
order scaling. This is much better than direct solvers for the corresponding matrix
system (typically LU decomposition), which exhibit cubic scaling.

The number of terms used in the convergent series plays an important role in
the accuracy and speed of solution. Figure 1 shows that as the mobility ratio of
the two fluids becomes larger, the number of terms required by the convergent
series to reach a desired error increases. This is because the value of λ approaches
−1, and successive terms in the convergent series do not decay as rapidly. When
λ = −1 there is no unique solution to equation (10), due to a singular value in the
corresponding spectrum of the integral operator.

To investigate mesh and time independence, the model was tested under various
capillary numbers, which describe the ratio of viscous driving forces to surface
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Figure 1: Residual error convergence with number of terms in the convergent
series and varying mobility ratio.

tension forces. Due to the low mobility ratio being investigated, and the radial
set-up of the Hele-Shaw injection, the capillary number must be modified to
adequately describe the flow regime:

Ca′ =
µ2Q

2πaγ

(a
b

)2
=

aQ

24πγM2
(16)

The modified capillary number (16) together with the mobility ratio uniquely
describe radial Hele-shaw flow. In figure 2, the spatial convergence of the solutions
can be seen. Spatially, the solution converges very quickly; for large ∆x roughly
6th order is observed. This excellent spatial convergence means that relatively
few elements can be used, with very high accuracies being achieved. Temporally
the solutions converge linearly, as expected from the forward Euler time stepping
scheme.

4 Mobility ratio effects

In carbon sequestration, the CO2 injection is performed supercritically, with the
mobility ratio between supercritical CO2 and brine of the order 10–30 [17]. The
two-phase method presented here allows the efficient solution of such flow regimes
and can be used to characterise the transition through a range of finite mobility
ratios. Two finite mobility ratios are presented in figure 3, in which Ca′ = 75.
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Figure 2: Mesh independence study. L1 error norm quoted is between the
numerical solution and a mesh independent case.

In the β = 10 case, the bases of the fingers continue to grow with time. However,
in the β = 1000 case, the finger bases effectively become stagnation points, where
the interface velocity at the base drops to near zero. This characteristic is a well
known feature of high mobility ratio injection, causing highly convoluted surfaces
and a much lower swept volume of the higher viscosity fluid. A consequence of
the slowed base evolution and quickly growing primary fingers is that competing
fingers’ growth is hindered by the larger primary fingers and shielding occurs [2].

However, in the low mobility ratio regime, the growing finger bases allow
secondary growing fingers to be fed by fluid, meaning that they can possess
significant momentum. Shielding between competing fingers is inhibited as the
fluid flow is not forced from the secondary finger into the primary finger, meaning
much greater interaction and non-linear dynamics are seen between growing
fingers.

5 Long time scale evolution

To investigate the complex interfacial dynamics and non-linear growth that occurs
in a realistic injection case, asymmetry can be introduced into the starting
perturbed bubble interface. By including different wavelengths of perturbation
along the interface, multiple length scales are produced, mimicking that which
would be found in reality due to random noise and disturbance. Long time
evolutions of the interface are presented in this section, in order to see the effect of
finger interaction when shielding is inhibited.
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Figure 3: Bubble evolution plots with varying mobility ratio, β. Each subplot
shows the interface of the bubble every 100s from 0–400s.
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Figure 4: Bubble Interface of asymmetric CO2(sc) injection at different times.
Dotted interface shows the initial bubble profile.

Presented in figure 4 is a long time interface evolution using parameters defined
for a realistic supercritical CO2 injection, with Ca′ = 60.5 and β = 10.86.

The bases of the fingers in figure 4 have moved significantly from the starting
profile and have not formed stagnation points, as usually found in high mobility
ratio flows. The smallest wavelength fingers on the right of the domain have a large
interaction with each other, with severe base thinning occurring at two different
locations. Due to the relatively large capillary number, the critical length scale of
bifurcation is small, allowing side branching to form on some of the larger fingers.
Competing fingers can grow very close to each other, creating a small immiscible
lubrication layer between them.

286  Boundary Elements and Other Mesh Reduction Methods XXXVII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press



Figure 4b shows two disjoint bubbles of CO2 that have detached from the main
plume due to base thinning on the primary finger. The first finger to detach is
caused by the primary finger growing behind it, however the second finger break-
off is due to a combination of thinning caused by fingers growing into the left and
right side of it. After the second break-off, the finger that is still attached to the
main plume acts to push the trailing edge of the detached bubble, which along
with surface tension quickly forms it to a droplet shape. The small attached finger
left from the second break-off quickly recedes due to the very high curvature and
re-stabilising effect of surface tension.

This kind of breaking has been reported before in [9] and [10], however, using
a diffuse interface model or volume tracking technique does not as accurately
resolve the interface between the fluids as an interface tracking method. Interface
capturing introduces a level of uncertainty about the exact position of the interface
and hence whether breaking or coalescence should occur when two fingers grow
very close to each other. [7] and [8] showed experimental that coalescing and finger
break-off could occur, although a small miscible region exists between the fluids
experimentally, as the liquids are never completely immiscible.

In the present model, if a sufficiently high enough element density is used, finger
break-off always occurs in preference to coalescence. The fluids are considered
to be completely immiscible and therefore no coalescence should occur, as a
lubrication layer should always separate the fingers.

6 Conclusion

A two-phase BEM formulation for solving low mobility ratio flows has been
developed and used to investigate viscous fingering mechanisms using realistic
CO2 sequestration fluid properties. When the mobility ratio of the two fluids is
of order 10–50, the fingering characteristics are vastly different to those predicted
by single-phase, or high mobility ratio models. The near stagnation points on the
bases of the fingers found in single-phase flows were not found when using the
two-phase model for low mobility ratio flows.

Finger interaction was found to be much more significant than in single-phase
models, and on small wavelength perturbations could lead to base thinning and
eventual finger breaking. After breaking, the detached bubbles would continue
with the velocity of the surrounding fluid.
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