
 

BEM modeling of wave diffraction in  
an elastic matrix with nano-heterogeneities 

S. L. Parvanova1, G. D. Manolis2 & P. S. Dineva3 
1Department of Structural Engineering,  
University of Architecture, Civil Engineering and Geodesy, Bulgaria 
2Department of Civil Engineering, Aristotle University, Greece 
3Institute of Mechanics, Bulgarian Academy of Sciences, Bulgaria 

Abstract 

This work addresses wave diffraction and scattering in a homogeneous, elastic 
matrix containing multiple heterogeneities at nano-scale. The source of wave 
motion is an incident, time harmonic elastic pressure (P) wave propagating 
through the heterogeneous matrix. The approach followed here is based on a 
combination of (a) classical elastodynamic theory for the bulk solid, relating the 
total wave fields with the incident and scattered ones through the superposition 
principle; (b) non-classical boundary conditions and localized constitutive 
equations for the matrix-heterogeneity interface in the framework of the Gurtin-
Murdoch surface elasticity theory. The method of solution is the boundary element 
method using frequency-dependent fundamental solutions for the governing 
equations of the bulk solid.  
Keywords: wave diffraction, stress concentration, wave motion, Gurtin-Murdoch 
model, nano-cavities, nano-inclusions, boundary elements. 

1 Introduction 

In this last decade, nanostructured materials (e.g. nanocrystals, nanochannel 
arrays, nanocomposites containing coated nanowires, etc.),  nanoscale structural 
elements (e.g. quantum dots, quantum wires, carbon nanotubes, nanorods,  
thin films, nanoparticles, nanoplates) and finally nanodevices used in 
telecommunucation networks, plus nano-opto-electro-mechanical systems, nano-
probes and nanosensors have all become increasingly popular because of their 
unique mechanical, electronic, chemical and optical properties. The fabrication 
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and use of these materials and components, however, require novel developments 
in both theoretical and applied mechanics, as well as new and specialized 
computational techniques, see Srivastava and Atluri [1].  
     One of the main thrusts of what is now known as nano-scale mechanics is the 
so called multi-scale approach, which aims at extending the range of classical 
continuum mechanics by bridging the basic principles of the continuum mechanics 
theory with the effects observed at the molecular level. Along this direction, we 
have the pioneering works of Gurtin and Murdoch [2, 3] who developed a general 
theoretical framework to account for both surface and interface stresses. In their 
model, the interfaces between the nano-inhomogeneity and the surrounding matrix 
are regarded as thin membranes that possess their own mechanical properties and 
surface tension. Then, residual stresses develop around the surface and the 
interface, even in the absence of external loading. The effect of these residual 
stresses is size-dependent and their influence becomes very significant for nano-
sized materials.  
     Next, the techniques used for solving both static and dynamic problems of 
solids containing nano-inhomogeneities are as follows: (a) analytical, such as the 
complex variable technique, see Tian and Rajapakse [4], and the wave function 
expansion method, see Wang [5], Wang et al. [6] and Ru et al. [7]; (b) finite 
element method (FEM), see Wang et al. [6]; (c) boundary element method (BEM), 
see Dong [8], including the complex variable BEM, see Jammes et al. [9]. The 
conclusions, which can be drawn at this stage are as follows: (a) to date, there is a 
limited number of theoretical and numerical studies for solids on surface effects 
as seen from the nano-scale; (b) most of the solution techniques that have been 
developed are semi-analytical, with relatively few papers using the boundary 
element approach, which is known to be a highly accurate numerical tool. Also, 
most BEM solutions are for problems under static conditions; (c) to the best of our 
knowledge, there are no BEM-generated results for elastic wave diffraction and 
scattering by nano-inhomogeneities embedded in a solid matrix.  
     In this work, we develop BEM solutions for dynamic stress concentration 
phenomena in the vicinity of multiple circular nanoholes and/or nano-inclusions 
of arbitrary size, geometrical configuration, material properties, and taking into 
account surface effects at the same time. A systematic study of this kind involving 
the dynamic response of an infinite solid matrix with multiple heterogeneities 
acting both as wave scatterers and stress concentrators is, in our opinion, necessary 
in view of potential technological developments in the field of nanostructures.   
     Thus, the present work is an effort in this direction and is broken down as 
follows: Section 2 defines the boundary value problem (BVP) for in-plane wave 
motion problem, while section 3 presents a formulation starting with a boundary 
integral equations statement along the interface between the nano-inclusion and 
the surrounding solid matrix. Next, section 4 presents the results of a rather 
detailed verification study, while section 5 presents new results from parametric 
studies that serve to establish the non-uniform stress distribution in the solid matrix 
as a function of the internal distribution of multiple nano-heterogeneities. Finally, 
the paper ends with a list of conclusions. 
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2 Problem statement 

We consider the in-plane problem, where an elastic matrix of infinite extent 
contains multiple cylindrical elastic inclusions of arbitrary size, number, material 
properties and geometrical configuration and is swept by time-harmonic pressure 
(P) waves. The n-th interface between the matrix and the n-th nano-inclusion is 
denoted by n

I , where n = 1, 2, …N.. It is assumed that inclusions do not intersect 

and their total surface is denoted as
1

N n
I In

   . The elastic (or Lame) constants 

and the density of the matrix are , ,M M M   , while those of the n-th inclusion are 

, ,n n n
I I I   .  A Cartesian coordinate system 1 2 3Ox x x  is next introduced and in-

plane wave motion is studied with respect to the plane 3 0x  . Furthermore, it is 

assumed that all field quantities are time harmonic with frequency ω of the 
incident wave, so that the common factor exp( )t  in all dependent variables can 

be omitted.   Once the incident (‘in’) wave impinges on the inclusions, a scattered 
(‘sc’) wave is generated and the total wave field is given by superposition as 

in sc
i i iu u u   and in sc

i i it t t   for the displacements and tractions, respectively. 

Next, the displacement that develops at field point  1 2,x x  once incident P-wave 

has propagated past it has the following form: 

 1
0 1 2

2

cos
exp cos sin

sin

in

P Pin

u
u ik x x

u


 


   

        
  

, where 0Pu  is the unit 

displacement amplitude, P Pk C , ( 2 )P M M MC      respectively are 

the wave number and the phase velocity of the wave, and θ is the incident angle 
between the direction of propagation and axis 1Ox . 

     For the problem defined above, the only nonzero quantities are the two 
displacement vector components  1 2, ,iu x x  , i = 1,2, the stresses  

 1 2, ,ij x x  , i,j = 1,2 plus the corresponding traction vector components 

   1 2 1 2, , , ,i ij jt x x x x n   ,  where in  is the outward pointing, unit  normal 

vector. In the bulk solid, the equations of motion in the absence of body forces is  

 
2

, 0ij i ju                                                    (1) 

 

where ,
, ,

,

M M
ijkl k l

ij I n I n
ijkl k l

C u in the matrix

C u in the n th inclusion


  
,  ijkl ij kl ik jl il jkC          .  

 
     Here, commas subscripts denote partial differentiation with respect to the 
spatial coordinates and the summation convention over repeated indices is 
implied. 
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     The classical theory of elasticity is applicable to the bulk solid, but on the 
various surfaces, the interface stresses which develop lead to a set of non-classical 
boundary conditions. At first, assume that the n-th interface between each nano- 
inclusion and its surrounding matrix is regarded as a thin material surface that 
possesses its own mechanical properties , ,,S n S n   and surface tension 0,n . More 

specifically, 0,n  is the residual surface tension under unstrained condition that 
will induce an additional static deformation, but in dynamic analysis this is often 
ignored. These interfacial effects are described in the theory developed by Gurtin 
and Murdoch [2, 3] and Gurtin et al. [10]. Following their model, the constitutive 
equation along the j-th interface j

i  between the solid matrix and j-th inclusion is 

written as  
 

 , 0 ,2sur j S S sur j
j j j                                               (2) 

 

     In the above, , ,,sur j sur j   respectively are the stress and the corresponding 

strain along interface j
i . Next, the boundary conditions along j

i  are as follows 

[11]: 
     (a) Continuity of displacements along the j-th interface coming from the side 
of the heterogeneity j

iu  and from the side of the surrounding matrix M
iu  in the 

1 2 3Ox x x  coordinate system: 
 

; 1,2j M
i iu u i                                                    (3) 

     (b) Interface equilibrium conditions along an arc length sj, i.e. on the 
undeformed interface j

j is    in terms of the local normal and tangential ( , )n t  

coordinates defined on j
j is   : 
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  

               
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            (5) 
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     Following substitution of Eq. (5) into Eq. (4), the interface equilibrium 
conditions can be recast in the following form: 
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 (6) 

 

     In the above, we have that  2 S S
j j j    is a material parameter, 

1 1 1 2 2 2;j M j Mn n n n n n       are the components of the normal vector as viewed 

from either side of an interface, j  is the curvature radius of the j-th interface j
i , 

and subscripts t and n denote the tangential (counter-clockwise is positive) and 
normal directions along j

i . Furthermore, ,sur sur   respectively are the strain  

and rotation vectors that develop at the surface. Finally, in the case of a  
nano-cavity, the normal and tangential stresses are j

n = j
t = 0.  

     In so far as the direct BEM formulation with displacements and tractions as the 
field variables is concerned, the boundary condition in Eq. (6) can be expressed in 
terms of tractions alone, bypassing the need to introduce normal and tangential 
displacement components j

nu  and j
tu as follows:  
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f T                                     (7) 

 

     In the above reformulation, we have the surface force vector and the surface 
traction matrix respectively defined as follows:  
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T 


     (8) 

 
     The solution of the BVP formulated above satisfies the governing equations, 
Eq. (1), plus the continuity (or essential) boundary conditions of Eq. (3) and the 
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equilibrium (or natural) boundary conditions of Eq. (7) along each interface j
i , 

where 1, 2,...j N . Note that when the membrane interface parameters 0 0j  , 

0S S
j j   , then boundary condition of Eq. (6) transforms into the classical 

boundary condition for traction continuity. 

3 BEM development and numerical implementation 

The BEM statement for time-harmonic elastodynamics is used here in the form 

 

             * *, , , , , , , ,sc sc sc
ij j ij j ij j

S S

c u U t dS P u dS S       x x y y y x y y y x       (9) 

     In the above, ijc  are jump terms dependent on the local geometry at the 

collocation point  1 2,x xx , surface IS   , and *
ijU  is the displacement 

fundamental solution of the governing equation (1). Also, * *
,ij ijql qk l kP C U n  is the 

corresponding traction fundamental solution. The unknowns of the problem are 
now the scattered wave field displacements along all interface boundaries. The 
displacements and stresses at any point in the surrounding elastic matrix can be 
obtained from the well-known integral representation formulas using the solution 
of Eq. (9) for displacements and tractions along all interface boundaries.   
     The numerical implementation of the above boundary integral equations 
follows standard procedure, in the sense that all boundaries of the problem in 
question (in our case this would be all interfaces j

i , j = 1, 2 …N) are discretized 

into segments using three-node, quadratic boundary elements (BE). We also 
distinguish between the weakly singular displacement kernel that can be 
numerically integrated by special-purpose Gaussian quadrature, supplemented by 
a breakdown of the singular BE into sub-elements for better accuracy, and  
the strongly singular traction kernel that is integrated indirectly by applying the  
rigid-body motion concept. Next, nodal collocation leads to a system of linear 
algebraic equations. We note that for wave propagation problems, the incoming 
elastic wave carries a stress field that can be converted to input tractions at all 
surfaces. Furthermore, for the purposes of this work, the BEM formulation is 
enhanced by sub-structuring capabilities, whereby it is possible to model 
heterogeneities and the surrounding elastic matrix separately as if they were 
independent structures, and reconstituting the complete solution through 
application of the boundary conditions. Finally, the present BEM implementation 
was carried out using the MATLAB [12] software package. 

4 Numerical verification studies 

Verification of the above BEM development is accomplished by running a number 
of test examples for both static and time-harmonic loading conditions. 
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4.1 Test example 1: in-plane nano-scale circular cavity under a static load 

Consider an infinite, linear elastic plane with a single, nano-scale cylindrical hole 
of radius 9

0 2.10a m .  The plane is under a far-field loading and the surface 

stresses acting at the hole boundary are modeled as a thin film with different values 

for the surface elasticity parameters S  and S , keeping the elastic properties of 

the surrounding medium fixed as  60 , 26.13M MGPa GPa   . Plane strain 

condition are assumed, and two far-field loads are considered: (a) Uniform tension 
along axis 2Ox , i.e. 1 2 00;t t   ; (b) bi-axial loading, i.e. 1 0 2 00.5 ;t t   . 

We introduce parameter 02 S S
SM      , and the special case of 0 0   is 

used for validation purposes. This test example was solved analytically in Tian 
and Rajapakse [4] and in Grekov and Morozov [13], who reduced the BVP to a 
hypersingular integral equation with respect to the unknown surface stress by 
applying the Goursat-Kolosov’s complex potentials and Muskhelishvili’s 
technique, respectively.  A cylindrical coordinate system  3, ,r x  with the 3x -

axis along the diameter of the cylindrical inclusion is adopted for this problem. 
Figure 1 shows a comparison between the authors' BEM results and analytical 
solution obtained in [13] for the variation of the normalized stress 0/   ratio 

along the perimeter of the circular hole with fixed radius 0a  and for different 

values for the elastic properties of the interface boundary parameter SM  (in N/m). 

The BEM mesh employed here comprised 32 quadratic (three-node) BE. The 
solution, as obtained by the authors, reproduces the analytical solution derived in 
Grekov and Morozov [13] exactly.  

 
 

 

Figure 1: Stress ratio 0/   along the circular hole perimeter for different 

surface elastic properties Ms: (a) uniform tension; (b) biaxial 
loading. 
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4.2 Test example 2: in-plane nano-scale circular inclusion under a P-wave 

An infinite solid matrix with material constants ,M M  , and M  contains an 

elastic cylindrical nano-inclusion with radius 0a  and material properties ,I I  , 

and I . The surface elastic properties are represented by the dimensionless 

parameter MS aMs 02/ . Assume as the excitation a time-harmonic P-wave 

with frequency  propagating along the positive 1Ox  direction. When the wave 

first impinges on the inclusion-matrix interface, a reflected wave is generated that 
propagates back into the matrix, while a refracted wave moves into the inclusion. 
We define a non-dimensional frequency with respect to the solid matrix material 

properties as M
PM Ca /0 . Consider now the case with fixed ratios of 

2.0/ MI   and 0.3/  MI , plus a constant value of Poisson ratio's for both 

solid phases as 0.26  . Figure 2 presents a comparison between the authors’ 
BEM solution and the results obtained by Ru et al. [7] for the dynamic stress 

concentration factor (DSCF) defined as 0/  along the interface boundary, 

where 2
0 0M u    , / SVC   and /SV M MC   . We consider a 

range of values for parameter s and two values for the frequencies as M = 0.2 and 
M = . All results to within plotting accuracy, despite having been generated by 
two different computational techniques. We note here that Ru et al. [7] used the 
displacement potential method. The BEM mesh employed comprised 24 BE for 
M = 0.2 and 64 BE for M = . 

Figure 2: Stress ratio | 0/  | along the interface for case / 0.2I M   , 

/ 3.0I M    and at frequency values of: (a) M = 0.2; 

(b) M = . 
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4.3 Test example 3: two in plane nano-scale circular holes under a P-wave 

Two circular cylindrical holes of equal radius a  and center-to-center separation 
distance b2  (see Figure 3) are placed in the infinite plane with material properties 

,M M  , and M . As before, a time-harmonic P-wave propagates through the 

solid matrix with frequency  and incident angle  = 0 with respect to the 
horizontal axis. The surface elastic properties are described by the dimensionless 
parameter MS aMs 2/ , while Poisson's ratio for the solid medium is 0.26  . 

The following notations are introduced:  = a/CP, DSCF = 0/
11
  . 

     This test example was solved analytically by Wang [5], who used the wave 
function expansion method and the translational addition theorem. In Figure 3 we 
compare our BEM results with those of Wang [5]. Our BEM mesh comprised 32 
quadratic BE.   

Figure 3: (a) Geometry; (b) DSCF along the upper circular hole perimeter at 
various s values for  = 0.2 and at b/a = 1.25. 

     All figures in this section conclusively demonstrate the accuracy and 
convergence of the BEM developed in this work for the solution of the general 
elastic wave diffraction and scattering problem by nano-inhomogeneities placed 
within an infinite solid matrix.  

5 Parametric studies 

The aim here is to solve the problem involving multiple nano-cavities or 
nano-inclusions in an elastic matrix of infinite extent, so as to investigate the 
sensitivity of the DSCF that develops at the interfaces to the following key factors: 
(a) surface properties, as quantified by the interfacial material constants; (b) type 
of the nano-heterogeneity; (c) dynamic interactions between multiple nano-
cavities and/or nano-inclusions, including their number and geometrical 
configuration; (d) frequency content and incidence angle of the incoming wave.  
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Figure 4: Geometry of the four models considered in the BEM simulations. 

     We consider the four models of Figure 4 to study multiple scattering and 
diffraction phenomena in an infinite elastic matrix with nano-heterogeneities in 
the form of either cavities or elastic inclusions. The heterogeneities have circular 
shape with radius 1r nm  and the center-to-center separation distance of 

2 2.5d nm . The material properties of the infinite plane are ,M M  , M  in 

consistent units, while those of the inclusions are ,I I  , I , Poisson ratio is 

0.26  for both phases. For the case of the inclusions, we define the ratios 
2.0/ MI   and 0.3/  MI . In terms of results, the DSCF along the 

perimeter of the central hole is plotted in Figure 5 and that of the inclusion in 
Figure 6, for different values of the dimensionless parameter s and fixed non-
dimensional frequency / M

Pr C   of the P-wave with incident angle  = 0.  

 

 

Figure 5: DSCF along the central circular cavity perimeter at fixed  and for 
different values of the interface surface parameter s. 
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     The following conclusions can be drawn based on the above numerical 
simulations: (a) the surface effects and the dynamic interaction between multiple 
heterogeneities, regardless of cavities or elastic inclusions, clearly show  
multiple wave scattering and diffraction phenomena; (b) the ensuing DSCF is 
sensitive to the geometrical configuration, size and type of nano-heterogeneities, 
wave frequency and incident angle, elastic properties of the matrix and of the 
inclusions, plus surface properties of the interfaces; (c) independently of  
the incident wave frequency and of the distance and configuration between the 
multiple cavities or the elastic inclusions, surface elasticity always tends to depress 
the DSCF values which develop; (d) a key factor for this problem seems to be the 
ratio of the incident wave length to the center-to-center separation distance, which 
heavily influences on the non-uniform stress distribution in the infinite matrix. 

 

 

Figure 6: DSCF along the central circular inclusion perimeter at fixed M 
and for different values of the interface surface parameter s. 
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In this work, the two-dimensional elastodynamic problem of in-plane motion is 
solved in the frequency domain for a heterogeneous elastic matrix containing 
multiple nano-heterogeneities. The computational approach developed for this 
purpose is the direct BEM, employing fundamental solutions that solve the Navier-
Cauchy equations of dynamic equilibrium for the bulk solid. This BEM 
formulation is augmented by the surface elasticity model of Gurtin and Murdoch 
[2], which accounts for the proper boundary conditions at the free surfaces and the 
interfaces when the solution sought at the nano-level for the heterogeneities. Next, 



this augmented BEM is successfully gauge against a number of benchmark 
examples and is subsequently used to compute the DSCF around the nano 
heterogeneities embedded in the solid matrix.  
     The novelty of the present numerical approach lies in the effective combination 
of four stages, namely (a) mechanical modeling based on classical elastodynamic 
theory for the bulk solid, (b) introduction of non-classical boundary conditions 
stemming from localized constitutive equations for the material interfaces, 
(c) verification of an efficient BEM-based computational tool and (d) extensive 
numerical simulations for the benchmark problem of an elastic  matrix containing 
multiple nano-heterogeneities that act as both wave diffractors and stress 
concentrators. In sum, the present work serves as a valuable tool in the effort to 
develop new classes of nano-components and nano-structures for the electronic 
industry, for optics, for biomedical engineering purposes, and for other novel 
technological fields. 
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