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Abstract 

The solution for plate bending under harmonic loads including the geometrical 
non-linearity effect is presented. The influence of shear deformation and the 
rotatory inertia in the plate behavior were considered by using the elastodynamic 
fundamental solution. An additional domain integral was included in the boundary 
integral equations to consider the geometrical non-linearity effect where in-plane 
forces were assumed invariant with time and the deflection derivatives dependent 
of the harmonic solution. An analysis to get the lowest eigenvalue is used to show 
the relation between maximum values for in-plane forces according to the 
frequency value. Results obtained when plate rotations were used instead of 
deflection derivatives in the term related to the geometrical non-linearity effect are 
discussed and compared to solutions in the literature to show the extension of this 
strategy. 
Keywords: harmonic solution, critical in-plane loads, the geometrical non-
linearity effect in Mindlin plates. 

1 Introduction 

The plate bending model including the effect of shear deformation is very efficient 
with reference to the classical bending model when it is necessary to evaluate 
stress concentration in the edge zone of the plate or around holes that have a 
diameter not larger than eight times the plate thickness [1]. The discrepancies in 
dynamic analysis using the classical model with reference to three-dimensional 
theory appeared for wavelengths less than 10 times the plate thickness and a limit 
for velocities could not be established for wavelengths approaching zero [2]. 
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Mindlin presented a plate bending model similar to that proposed by Reissner [3] 
and included the influence of rotatory inertia to perform dynamic analyses [2]. 
     A review on the literature until 1989 on the buckling of thin rectangular plates 
under in-plane loads was done by Jones in [4]. Lei et al. [5] formulated an integral 
equation for geometrically nonlinear behavior of Reissner plates, where the 
domain integral was discretized into constant triangular cells. A similar study was 
developed by Purbolaksono and Aliabadi [6] but using constant rectangular cells. 
Baiz and Aliabadi [7] made an improvement in evaluating the effect of geometric 
nonlinearity on the plate bending analysis by implementing a 9-node quadrilateral 
cell and introducing a free term factor in the integral equation. Karam and Telles 
[8] and Ribeiro and Venturini [9] used the domain discretization in dealing effects 
due to material nonlinearities. 
     Plate bending analyses for harmonic loads can be performed using the 
elastodynamic fundamental solution [10–12] in the boundary integral equations 
(BIEs). The effects of shear deformation and rotatory inertia can be considered 
alone or coupled in the elastodynamic fundamental solution [13] adopted in this 
study where an analysis on the solution for plate bending under harmonic loads 
considering the geometrical non-linearity effect is carried out. An additional 
domain integral was included in BIEs to consider the geometrical non-linearity 
effect with in-plane forces assumed invariant with time and the deflection 
derivatives dependent on the harmonic solution. An analysis to get the lowest 
eigenvalue is used to show the relation between maximum values for in-plane 
forces according to the frequency value. The numerical implementation used 
isoparametric quadratic boundary elements combined with constant cells on 
domain whereas the inverse iteration and Rayleigh quotient were employed in the 
eigenvalue analysis [14]. Results obtained when plate rotations were used instead 
of deflection derivatives in the term related to the geometrical non-linearity effect 
in BIEs are discussed and compared with solutions in the literature to show the 
extension of this strategy. 

2 Boundary integral equations 

The equations of motion in time-harmonic problems for an infinitesimal plate 
element under a transverse distributed loading q(t, xi) and considering in-plane 
forces [1] are next written with Latin indices taking values {1, 2 and 3} and Greek 
indices taking values {1, 2}: 
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 (1) 
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 (2) 

     The in-plane forces N, related to the plane stress problem, are assumed to be 
invariant with time whereas only the deflection derivatives are dependent of the 
harmonic solution, the plate has a uniform thickness h and the mass density . The 
transverse acceleration 2w/t2 and the angular acceleration 2/t2 are functions 
of the deflection w and plate rotations , respectively. The constitutive relations 
are next written: 
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D is the flexural rigidity,  is the Poisson ratio. The shear parameter 2 is equal to 
2/12 in this study [2, 12]. 
     The static-like form of the equations of motion for harmonic problems led to a 
displacement boundary integral equation (DBIE) similar to that presented for static 
problems [10] but used in conjunction with the elastodynamic fundamental 
solution instead. The geometrical non-linearity effect is included thorough an 
additional domain integral in the DBIE: 
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Cij is an element of the matrix C related to the boundary at the source point, which 
becomes the identity matrix when a smooth boundary is considered. u is , u3 is 
w, t is the traction force related to moments (t= M.n), t3 is the force related to 
shear (t3= Q.n). Uij represents the rotation (j=1, 2) or the deflection (j=3) due to 
a unit couple (i=1, 2) or a unit point force (i=3), respectively, Tij represents the 
moment (j=1, 2) or the shear (j=3) due to a unit couple (i=1, 2) or a unit point force 
(i=3), respectively. 
     The elastodynamic fundamental solution in this study [13] was an improvement 
of [12] because the behavior of singularities in the fundamental solution kernels 
of DBIEs were turned to the same type of those existing in the elastostatic 
fundamental solution. Furthermore, the fundamental solution can be reduced to 
that for the classical plate theory [15] when variables related to the effects of shear 
deformation (S) and rotatory inertia (R) are set equal to zero, as in [12]. The 
variables in DBIE, equation (5), related to the fundamental solution are next 
written in terms of the potential functions iβ and Hi: 
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e3 is the permutation symbol. The arguments of the potential functions are 
dependent of variables related to the rotatory inertia (R), the shear deformation (S) 
and the classical dynamic factor for plates (0

4), defined in [2]: 
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     The potential functions of the solution due to the unit point force are: 
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     When the solution due to unit couple in direction γ is used, they are given by: 
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     The equations of motion for in-plane forces invariant with time are equal to the 
equilibrium equations in static problems (Nαβ,α= 0) and some authors label this 
type of in-plane forces as “static in-plane forces” in dynamic analyses. The term 
related to the geometrical non-linearity effect in equations (2) or (5) can be 
simplified when the equilibrium equations for in-plane forces in static problems 
are used. The curvatures or the second derivatives for deflection appear as result 
from this simplification, as shown in several papers in the literature. This 
simplification was not used in this study but an algebraic manipulation was done 
in the domain integral related to in-plane forces of equation (5) to employ the 
divergence theorem. 
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     The algebraic manipulation carried to using deflection gradients, only, when 
the geometrical non-linearity effect is considered. The final DBIE is given by: 
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     The gradient BIE at an internal point is obtained by differentiating the 
displacement BIE with respect to the coordinate of the source point (X’). 
The result for the deflection gradient BIE can be written using differentiation in 
terms of the coordinate of the field point with the direction cosines of the outward 
normal at the field point written off the differential operator in the notation [17]: 
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3 Numerical implementation 

The numerical implementation employed quadratic shape functions for 
isoparametric boundary elements with collocation points always placed on the 
boundary. The same mapping function was used for conformal and non-conformal 
interpolations, i.e. nodes at ends of quadratic elements remain at ends when 
discontinuous elements were employed. The collocation points were placed at 
nodes in case of continuous elements and at positions (-0.67, 0.0, +0.67), in the 
range (-1, 1), in case of discontinuous elements, i.e. the collocation points were 
shifted to inside the element at the corresponding end where the discontinuity 
exists. Constant rectangular cell elements were used to discretize the domain 
integral related to the geometrical non-linearity effect, which was converted into 
an equivalent boundary integral performed on each side of the cell. The singularity 
subtraction [16] and the transformation of variable technique [18] were employed 
for the Cauchy and the weak type singularity, respectively, when integrations were 
performed on elements (or, side of the cell) containing the collocation points. The 
standard Gauss-Legendre scheme was employed for integrations on elements (or, 
side of the cell) not containing the collocation points. The inverse iteration and the 
Rayleigh quotient were used to perform the eigenvalue analysis. The basic inverse 
iteration procedure was employed without using the shift of origin proposed by 
Wielandt [14], i.e.: 

ሺ௞ାଵሻݔܣ  ൌ  ௞ (10)ݔ

௞ߣ  ൌ
൫௫ሺೖశభሻ,௫ೖ൯

൫௫ሺೖశభሻ,௫ሺೖశభሻ൯
 (11) 

     The basic inverse iteration procedure is very efficient for symmetric matrices 
and there are a lot of recommendations in [14] for complex matrices as well as on 
the procedure to introduce the shift of the origin to improve the convergence rate. 
In this study, the use of the basic procedure to obtain the lowest eigenvalue had a 
low number of iteration, which was in the range 6 to 14. The dot product between 
complex eigenvectors xk+1 and xk at the iteration k was done in the Rayleigh 
quotient according to equation (11). Equation (10) was not used explicitly in this 
study but starting with an eigenvector x1 with all elements (deflection gradients in 
directions x1 and x2 at the center of each cell) equal to 1.0, values for displacements 
and tractions at nodes of the boundary elements were found. These values were 
introduced in the discretized form of equation (9), i.e. the equation written in terms 
of matrices, to obtain the eigenvector x2 and the lowest eigenvalue at the first 
iteration step was obtained by using equation (11). The iteration procedure 
continued until the absolute difference between values of successive eigenvalues 
was less than 10-5. The proof of the convergence for the lowest eigenvalue can be 
found in [14]. The use of the Rayleigh quotient to obtain eigenvalues from low 
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precision eigenvectors was shown in [19] for symmetric positive definite matrices 
where the simple precision (4 bytes in a FORTRAN code) was adopted in the code 
to define the eigenvectors precision. The basic inverse iteration was used in [20, 
21] to obtain the critical in-plane forces and the natural frequencies for plates 
according to the classical bending model in the boundary element method with the 
static fundamental solution. 
     The considered plate in this study was the same as that adopted in [12, 13] to 
obtain the natural frequencies when the ratio (h/a) between the thickness value (h) 
and the plate side value (a) was increased from 0.05 to 1.0. The Young modulus 
(E) was 206.9 GPa, the Poisson ration () was 0.3, the mass density () was 
7860 kg.m-3, the side of the plate (a) had a length equal to 50 cm. Three values for 
the ratios (h/a) were used, 0.01, 0.05 and 0.10 to analyze the geometrical non-
linearity effect because thick plates would be obtained for greater ratios. The use 
of complex values in the fundamental solution does not limit the value for 
thickness in this boundary element formulation as explained in [12, 13]. The 
natural frequencies obtained in [12, 13] are next written and the theoretical values 
according to the classical theory were included: 
 

Table 1:  First natural frequencies (rad/s). 

Ratio h/a Classical [12] Mindlin [22] [13] 

0.01 612.8 610 - 
0.05 3064 3049 3015 
0.10 6128 5918 5800 

 
     The natural frequencies in Table 1 were obtained for the plate simply supported 
from all sides with hard condition (twisting moments restrained along the side). 
The first analysis was the computation of maximum values for in-plane forces 
applied in one direction, i.e. on edges of opposite sides of the plate. The adopted 
frequency in the elastodynamic solution was 0.1 rad/s to approach the static 
condition and two meshes were used with two nodes at each corner: 

a) 32 quadratic boundary elements (68 nodes) and 16 constant cells; 
b) 64 quadratic boundary elements (132 nodes) and 64 constant cells. 

 
 

Table 2:  First critical in-plane force (KN/m) – with gradient of deflections. 

Ratio h/a Classical 
Shear and 
Rotatory 

32 BE 
16 cell 

Full 

64 BE 
64 cell 

Full 

32 BE 
16 cell 
Sym. 

0.01 376.5 376.3 391.3 378.5 379.2 
0.05 47064.5 46400.8 48174.6 46662.6 46668.0 
0.10 376515.7 356146.2 369386.5 357989.4 358003.3 
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     The values in the row “Classical” in Table 2 were computed using the solution 
in [1] and those in the row “Shear and Rotatory” were obtained using the vibration 
modes and procedures presented by Mindlin to obtain natural frequencies in [22]. 
The theoretical values were obtained for compression forces because the 
frequency is near to zero. The difference in theoretical values for critical in-plane 
forces was not significant for the ratio equals to 0.01 when the effect of shear 
deformation was considered. Values obtained with the second mesh (64 BE and 
64 cells) were close to theoretical values as well as for those obtained when a 
quarter of the plate was discretized using the first mesh (32 BE and 16 cells) and 
employing the symmetry condition as shown in results of the last row. The 
reduction in the difference when the thickness was increased (ratios 0.05 and 0.10) 
can be attributed to the introduction of the effect of shear deformation in the 
computation for all values and a numerical instability is being introduced for 
the lowest ratio. 
 

 

Figure 1: Maximum in-plane forces according to the frequency for a square 
plate simply supported from all sides with h/a=0.1. 

     The changing in the maximum value for in-plane forces according to the 
frequency is shown in Figure 1 where the lowest eigenvalue was obtained when 
the frequency value was increased. The inverse iteration seeks the lowest absolute 
value for eigenvalue and the code adopted positive values for compression in-
plane forces. It can be noted that tension values for in-plane forces were obtained 
for frequency values greater than first natural frequency. The effect of shear 
deformation introduced a reduction in value of the in-plane force that was 
increased according to the frequency. The behavior shown in Figure 1 can be 
changed according to the boundary value problem. A non-significant reduction in 
value of the in-plane force when the shear deformation is considered is shown 
in Figure 2. The plate simply remained, supported on opposite sides with in-plane 
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forces applied on these edges whereas the edges without in-plane forces were 
changed to free and clamped, respectively. The analysis of the frequency response 
[12, 13] to find the first natural frequency for the ratio (h/a) equals to 0.1 carried 
to a value of 3800 rad/s when the effects of shear deformation and rotatory inertia 
were considered and 3850 rad/s using the classical model. The second mesh was 
used (64 BE and 64 cells). This type of boundary condition appears in flange 
elements of beam sections of steel structures. 
 

 

Figure 2: Maximum in-plane forces according to the frequency for a square 
plate simply supported on opposite sides, one edge free and other 
clamped with h/a=0.1. 

Table 3:  First critical in-plane force (KN/m) – with plate rotations. 

Ratio h/a 
Shear and 
rotatory 

64 BE, 64 cell, Full 32 BE, 16 cell, Sym. 
Gradients 

of 
deflection 

Plate 
rotations 

Gradients 
of 

deflection 

Plate 
rotations 

0.01 376.3 378.5 378.7 379.2 379.4 
0.05 46400.8 46662.6 47338.5 46668.0 47343.3 
0.10 356146.2 357989.4 378708.4 358003.3 378719.8 

 
     When the gradients of deflection were replaced in the domain integral of BIEs 
by plate rotations multiplied by -1 the results were closer for theoretical values 
when the ratio 0.01 was used (as shown in Table 3). The equation for gradients, 
equation (9), is not used in this strategy and rotations are obtained with the 
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displacement BIEs. The theoretical value for the lowest ratio (0.01) is the almost 
the same when the shear deformation is considered or not. Thus, the use of plate 
rotations can be interesting when values near to the classical theory are being 
required. Furthermore, this behavior is consistent with the introduction of the 
effect of shear deformation that decouples plate rotations from gradients of 
deflection when thickness is increased [22].  

4 Conclusions 

The results obtained in solutions for harmonic loads including the geometrical 
non-linearity effect and employing the elastodynamic fundamental solution [13] 
were consistent with the expected behavior for plates according to the literature. 
The features shown and discussed using this formulation can be employed for 
other plate analyses according to specific requirements. The elastodynamic 
fundamental solution [13] presented a stable behavior in the analyses. 
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