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Abstract 

Sonic crystals are a relatively recent concept that is being explored for different 
applications. Several types of models exist in literature for their analysis, although 
in many cases they consider their elements to be rigid. In this work, the authors 
propose a hybrid numerical-analytical model based on the Method of Fundamental 
Solutions (MFS) to address the problem of sound scattering by a sonic crystal 
composed of non-rigid scatterers. This model would account for the full 
interaction between the acoustic medium and an array of elastic shell structures, 
which are assumed to be circular and filled with fluid. For that purpose, each 
scatterer is accounted for by means of a closed form solution, and the full set of 
scatterers is then coupled by means of the MFS. This strategy allows a compact 
description of the propagation medium while being very accurate and efficient 
from the computational point of view. Application examples are presented 
considering structures embedded in different acoustic media (air or water), and 
using the sonic crystal either as a waveguide or as a sound barrier. 
Keywords: MFS, sonic crystals, fluid–solid interaction. 

1 Introduction 

The study of periodic structures for sound attenuation, namely sonic crystals, has 
been a topic of increasing interest in recent years. Sonic crystals get their name by 
analogy with ordered structures of semiconductor materials such as silicon 
crystals, whose feature of allowing certain energy waves to pass through and block 
others is transposed, in sonic crystals, into the capacity to prevent or limit the 
propagation of certain sound frequencies. Historically, it is generally considered 
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that the first evidence that it was possible to achieve some effect of acoustic 
obstruction using structures in periodic arrays was derived fortuitously from a 
sculptural element, in the gardens of the Fundación Juan March in Madrid 
(Martínez-Sala et al. [1]). Since then, different aspects of the behavior of sonic 
crystals have been studied, some of which were essentially theoretical, as the 
influence of point defects (Wu et al. [2]) or the existence of waveguides in which 
the sound propagates with low attenuation (Vasseur et al. [3]). Practical uses of 
sonic crystals have been analyzed, and perhaps the most promising one is their use 
for the selective attenuation of sound, for example as traffic noise barriers 
(Sánchez-Pérez et al. [4]), since they can be a competitive solution when compared 
with classic noise barriers (Castiñeira-Ibáñez et al. [5]). Although a significant 
number of works has been published, the subject of sonic crystals is still under 
development and there are several issues that need further study. Recently a 2D 
approach to deal with the acoustic behavior of sonic crystals based on the MFS 
that considers the scatterers as rigid elements was proposed by Martins et al. [6]. 
The comparison between results provided by the numerical model and the ones 
provided by the Boundary Element Method (BEM) has shown good accuracy of 
the model as well its advantages in terms of computation times. Also the 
comparison between numerical and experimental simulations for a laboratory 
scale model made of PVC revealed good agreement (Martins et al. [7]). In this 
paper, an improvement of this previous approach is presented to additionally 
account for the elasticity of shell scatterers. In this model, the problem is  
divided in a series of subregions, one of them being the outer region, and  
the remaining ones, regions defined around each scatterer structure. As the 
fundamental/analytical solutions are known for each of those subregions, it 
becomes possible to establish a coupled model based on MFS, which accounts for 
the full interaction between the involved fluids and the solids that compose the 
scatterer structures, by just establishing the continuity of pressures and 
displacements along the boundaries connecting the subregions. 
     In summary, the method will be presented and validated as follow: first the 
theoretical formulation will be presented; a set of results obtained by the proposed 
model will then be verified against a finite element model and against the previous 
model developed by (Martins et al. [6]). In this point, different combinations of 
materials and shell thickness will be tested for two types of fluid, air and water. 
The comparison between results from these two models will show the influence 
of the scatterer’s stiffness as the fluid characteristics varies in its attenuation 
behavior.  

2 Mathematical formulation 

2.1 Governing equations 

Within the scope of this work, the 2D scattering of waves by cylindrical shell 
structures embedded within a fluid medium is analyzed. Thus, the governing 
equations of the problem correspond to the vectorial and scalar wave equations, 
respectively for the solid and for the fluid regions of the analysis domain.  
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Considering a homogeneous, linear isotropic elastic domain with mass density ߩௌ, 
shear wave velocity ߚௌ and compressional wave velocity ߙௌ, the propagation of 
elastic waves can be described by vectorial wave equation: 
 

αS
2൫׏׏.u൯-βS

 u=-ω2u                                        (1)×׏×׏2
 
where the vector u represents the displacement, ߱ is the circular frequency and, 
for a two-dimensional problem, ׏=ሺ∂ ∂x⁄ ሻiመ+ሺ∂ ∂y⁄ ሻjመ; iመ and jመ are the unit vectors 
along the ݔ and ݕ directions. 
     If the propagation medium is a fluid, with mass density ߩ௙, the propagation is 
governed by the Helmholtz equation, which can be written as: 
 

2p+kf׏
2p=0                                                    (2) 

 
where ݌ is the pressure and ݇௙ ൌ ߱ ⁄௙ߙ  is the wave number, with ߙ௙ being the 
speed of sound in the fluid medium; for this scalar equation, 
൫∂2=2׏ ∂x2⁄ ൯+൫∂2 ∂y2ൗ ൯. Within this fluid medium, the displacements can be 
defined as a function of the first spatial derivative of ݌, and are given by: 
 

ux	=	-
1

ρfω
2

∂p

∂x
,  uy	=	-

1

ρfω
2

∂p

∂y
                                         (3) 

2.2 MFS formulation 

Consider a fluid medium and the presence of an arbitrary number of circular shell 
structures made of elastic materials, and filled with a fluid material. This 
configuration is depicted in Figure 1. 
 

 

Figure 1: Schematic representation of the problem. 
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     Consider that, in the presence of NR shell structures, the problem is divided in 
NR	൅	1 subregions, one of them being the outer subregion (infinite fluid), and each 
of the ܴܰ subregions is defined around the shell structure, as represented in  
Figure 1.  
     Knowing the fundamental solutions for each of the defined subregions, a 
coupled model can then be defined, accounting for the full interaction between the 
involved fluids and the solids that compose the shell structures. For that purpose, 
continuity of pressures and displacements along the boundaries connecting the 
regions (considering that each subregion of Figure 1 has its own inner and outer 
regions) must be enforced. Using the MFS, the acoustic field in the outer region 
can be defined by considering a number of virtual sources, ∑ NVSj

NR
j=1  placed within 

all the subregions, and combining their effects in a linear manner as: 
 

∑=ሺϰሻ݌ ∑ aj,lG൫ϰ,ϰj,l
vs൯+Gሺϰ,ϰ0ሻ

NVSj

l=1
NR
j=1                               (4) 

 
while for a point placed within the fluid of the ݆th inner subregion, we have: 
 

∑=ሺϰሻ݌	 bj,lG
shell൫ϰ,ϰj,l

vs൯
NVSj

l=1                                        (5) 
 
where ߵ represents a point of coordinates ሺݔ,  ଴ is the position of a real sourceߵ ,ሻݕ
illuminating the system, ߵ௝,௟

௩௦ is the position of each of the ܸܰ ௝ܵ virtual sources 
placed within subregion ݆, Gሺϰ,ϰ0ሻ is the fundamental solution for the outer fluid 
at a point ߵ   originated by a source positioned atߵ  ଴; Gshellሺϰ,ϰ0ሻ is the fundamental 
solution for each inner region, incorporating the full interaction between each shell 
structure and the outer and inner fluids; the coefficients aj,l and ௝ܾ,௟ are unknowns 
that must be determined by conveniently establishing a system of equations, 
enforcing the continuity of pressures and displacements along each of the ܴܰ 
boundaries separating the outer region from each inner region. If the boundary 
conditions are enforced at ܸܰ ௝ܵ collocation points along the ݇th boundary (as 
illustrated in Figure 1), the continuity equations along the ݉th collocation point 
௠ߵ
௖,௞of that boundary can be written as: 
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			∑ ܾ௞,௟
డ

డ௡ሬԦ
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௖,௞, ௞,௟ߵ
௩௦ೞ೓೐೗೗൯ே௏ௌೖ

௟ୀଵ              (6) 

 
     A ܰܰݔ linear system of equations, with =2	×∑ NVSj

NR
j=1 , is thus assembled. 

Once this system of equations is solved, one may obtain the pressure at any point 
outside the shell structures by applying equations (4) and (5). 
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     The fundamental solutions for both the external fluid and for the fluid–solid–
fluid system can be found in the literature, such as in Godinho et al. [8] and 
Godinho et al. [9]. 
     It must be stressed that the coupling between subregions is enforced in  
fluid–fluid interfaces, at some distance from the interfaces with the solid media 
that constitutes the shell structures; using this strategy, the coupling can be 
performed in a region with smooth variations of the pressure, which greatly 
improves the performance of the MFS. Additionally, since the interface between 
subregions is virtual, it can assume a smooth shape, such as that of a circle, which 
has been demonstrated in previous works that leads to very accurate results 
(Godinho et al. [10]). Finally, if the fundamental solutions are computed 
analytically within each subregion, a further step can be given towards obtaining 
high accuracy.  
 

3 Verification of the model 

To verify the proposed coupled acoustic-elastodynamic MFS model, a comparison 
between the results computed with FEM (Finite Element Method) and MFS for a 
configuration including four scatterers embedded in water (with a density of 
ρf=1000 kg/m3 and allowing sound waves to propagate at αf	=1500 m/s) is 

considered. The four scatterers are assumed to be made of PolyVinyl Chloride 
(PVC), with a density of ρs=1400 kg/m3, a Young’s modulus of E=3.0146 GPa 
and a Poisson’s ration of v	=	0.40622, being βs=875 m/s and αs=2143 m/s. The 
scatterers have a fixed external radius of 0.1 m, a thickness of 0.025 m and their 
centres are equally spaced 0.4 m between them. A point source is located 3 m in 
front of the scatterers and a square grid of receivers equally spaced 0.25 m is 
positioned 1 m behind them. Figure 2a exhibits the described configuration, and 
in Figure 2b the FEM mesh around the scatterers is shown. A very refined mesh 
was used in this study in order to allow the analysis of higher frequencies (smaller 
wavelengths) of 5000 Hz. 
 
 

 

Figure 2: a) Configuration of the problem; b) detailed view of the FEM mesh. 
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     In Figure 3, the insertion loss calculated by the proposed MFS model and by 
the classic FEM approach are displayed, considering its average value over the 
grid of receivers.  
 
 

 

Figure 3: Comparison of the insertion loss provided by MFS and FEM models. 

 

4 Numerical simulations 

To better understand the effect of correctly modelling the elastic scatterers, results 
for insertion loss computed using the model proposed here were compared with 
those obtained using the methodology proposed by Martins et al. [6], in which just 
rigid cylinders are considered. 
     The basic layout analysed consisted on a system formed by an array of 10 x 3 
shell cylinders arranged in a rectangular lattice configuration placed within a fluid 
medium and filled with the same fluid (Figure 4). The noise source was placed  
3 m apart from the scatterers, and vertically centred with them. For both cases the 
response was evaluated at a square grid of 25 points equally spaced 0.25 m, and 
positioned 0.5 m away from the array of scatterers. The cylinders, with a fixed 
external radius of 0.1 m, had the centres equally spaced at 0.4 m between them, 
and three thickness values were considered: 0.005 m, 0.025 m and 0.095 m. Three 
different materials were also considered for the cylinders, all of them assumed to 
exhibit an isotropic elastic behaviour: PolyVinyl Chloride (PVC), concrete and 
steel. For all the cases, both damping and sound absorption were set to zero. The 
relevant material properties of the scatterers namely density, compression and 
shear wave speeds, are presented in Table 1. Two different fluids were also 
considered, namely air and water. The relevant material properties of the fluids 
(density and sound propagation velocity) are presented in Table 2. 
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Figure 4: Scheme of the tested layout. 

Table 1:  Properties of the elastic materials. 

  
ρs 

(kg/m3) 
αs (m/s) βs (m/s) 

PVC 1400 2143 875 

Concrete 2400 3727 2282 

Steel 7900 5982 3197 

Table 2:  Properties of the fluids. 

  
ρf 

(kg/m3) 
αf (m/s) 

Air 1.22 340 

Water 1000 1500 
 
     The results for the acoustic attenuation are presented in Figure 5 when the fluid 
is air, and in Figure 6 for water. As can be seen, for a fluid with the properties of 
air, the Insertion Loss behaviour is almost independent of the cylinders stiffness, 
and the results provided by the two models match almost perfectly. It can be 
concluded that in this case the strong contrast of properties between the fluid and 
the solid leads to a quasi-rigid behaviour of all the tested scatterers, and the 
assumption of rigid boundaries would be a sufficiently good approximation. 
     On the other hand, in the case of water, the results provided by the two methods 
are quite different, and become even more pronounced if the cylinders’ stiffness 
is reduced.  
     Analyzing the case of PVC scatterers, it can be seen that the Insertion Loss 
differs dramatically from the original model by Martins et al. [6]. Indeed, for the 
lower thickness of the cylinders, the computed curve reveals very small values of 
acoustic attenuation, and only very small and localized peaks coinciding with the 
resonances of the scatterers are visible. This behaviour can be seen in the pressure 
level wave fields presented for the 0.025 m thickness for a frequency away from 
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the resonance peak (500 Hz, Figure 7a) and near it (3020 Hz, Figure 7b). As the 
stiffness increases, the Insertion Loss computed by the proposed model tends to  
increase, and for the larger thickness significant attenuations occur around 
2500 Hz. Similar conclusions can be drawn when the material is assumed to be 
concrete or steel (Figures 6b and 6c), with the attenuation increasing with the 
thickness of the scatterers. When steel is considered, and for the larger thickness, 
the Insertion Loss approaches that of the rigid model, evidencing the quasi-rigid 
behaviour of the scatterers in that situation.  

a)  b)    
Figure 5: Results of the Insertion Loss when the fluid is air, considering the 

cylinders to be made of: a) PVC; b) concrete.  

a)  b) 
 

c)   

Figure 6: Results of the Insertion Loss when the fluid is water, considering 
the cylinders to be made of: a) PVC; b) concrete; c) steel. 
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a)  b)  

Figure 7: Results of the pressure wave field for the PVC case, 0.025 m thick, 
embedded in water: a) 500 Hz; b) 3020 Hz. 

5 Conclusions 

In this paper, a model based on MFS, to simulate the sound propagation around a 
sonic crystal structure is presented. With this procedure, it is possible to avoid the 
discretization of the solid material and of the solid–fluid interfaces. Verification 
against commercial finite element model in terms of sound attenuation of these 
type of structures revealed excellent agreement with large computational savings. 
     A number of tests were performed, simulating an array of cylinders embedded 
within a fluid, which could be either air or water. The computed results are 
indicative that the effect of the elastic material of the scatterers cannot be neglected 
whenever the contrast between the properties of both media is not large. In the 
case of weak contrast between materials, such as when thin cylinders are located 
within water, the behaviour of the periodic structure is markedly changed, and the 
numerical predictions are quite different from those given by a simpler model 
considering rigid scatterers. If, however, a very strong contrast occurs (as when 
the fluid is air), the elastic cylinders behave as rigid structures, and almost no 
differences could be identified.  
     The presented results evidence the importance of correctly modelling the 
behaviour of the solid material when a water-embedded structure is considered, 
and that the fluid-structure interaction effects cannot be neglected in that case. 
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