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Abstract 

A number of recently published studies are devoted to modelling of hydraulic 
fracture propagation in elastic rocks (reservoirs). The modern approaches assume 
modelling of the hydro-fracture by an open crack (in general curvilinear) loaded 
by a normal pressure distributed over the central part of the crack which surfaces 
are stress-free near the crack ends; so-called lag. Such step-like loads generate 
certain errors in computations if the standard method of mechanical quadrature, 
MMQ, is used to solve the system of singular integral equations, SIE. To 
eliminate these errors we suggest an approach that is somewhat similar to the one 
suggested by Savruk in Two-dimensional problems of elasticity for crack 
problems (1981) for a crack under concentrated load. The solution is sought as 
the sum of two solutions. The first solution addresses the discontinuities in the 
right-hand side of the SIE and corresponds to the case of a rectilinear crack under 
step-like load. This solution is found in analytical form via singular integrals. 
The second solution is found numerically by the standard MMQ from the full 
SIE with a smooth right-hand side obtained after integration of the first solution 
multiplied by the regular part of the kernel. Therefore the accuracy of the total 
solution is controlled by its numerical (second) solution. The paper presents a 
benchmark solution for a SIE with a degenerated regular kernel and a numerical 
solution for two parallel cracks under step-like loads (as a model of multi-stage 
hydro-fracture).  
Keywords: singular integral equations, discontinuous load, quadrature 
formulas, hydrofracture. 
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1 Introduction 

The crack problems in 2D can be reduced to a singular integral equation, SIE, of 
the following form, see e.g. Savruk [1] 
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where g(t) is an unknown function proportional to the density of the crack 
opening displacements that satisfies the Holder condition; K(t,x) and L(t,x) are 
bounded kernels continuous in (-1,1) (-1,1); p(x) is a known load on the crack.  
     The unknown function satisfies the following condition of single-valuedness 
of the displacements 
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The system (1)-(2) possesses a unique solution unbounded at both ends with the 
square root singularity. 
     For smooth loads applied on the whole surfaces of a crack the system (1)–(2) 
can be solved by using the Gauss-Chebyshev quadrature formulas by the method 
of mechanical quadrature, MMQ, as detailed in the next section. Its solution is 
stable with respect to small changes in the right hand side (loads).  The accuracy 
of the numerical solution depends upon the number of nodes (denoted as n 
further on) in the Gauss-Chebyshev quadrature formula for singular integrals, 
which is accurate for polynomials of the (2n-1) degree.  The increase of n in the 
quadrature formula (and the number of collocation points respectively) allows 
one to refine the solution to achieve given accuracy. However, for discontinuous 
step-like loads it is impractical to rich high accuracy due to limitations in 
computer recourses even for the case of several interacting cracks. This case 
however presents certain interest for practice, for example, in modelling of 
hydrofracture propagation where the loads with lag act on the crack surface, i.e. 
the crack is loaded in the middle by normal loads but it is stress-free near the 
ends.  
     The paper presents an approach to handle such loads by using the MMQ 
technique with insignificant increase of computer time required to make smooth 
the right-hand side of the SIE, which requires extra integration. Instead the 
accuracy of the solution can be dramatically improved without increasing the 
number of the nodes/collocation points, which allows one to consider a large 
number of cracks under step-like loads by using moderate computer resources.  
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2 Approach for discontinuous loads 

The standard numerical approach for solving the system (1)-(2) assumes the use 
of the Gauss-Chebyshev quadratures for singular integrals, which reduces the 
system to a system of linear algebraic equations, SLAE, of the following form 
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Here the following notations have been introduced 

 21)( kkk gq                                                  (4) 

for unknown values of the density of the crack opening displacements at the 
nodes of the Gauss-Chebyshev quadrature. The nodes and collocation points are 
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The quadratures are exact for qk interpolated by the polynomials of the (2n-1)th 
degree. In the case when the RHS of (1) is a polynomial of (2n-2)th order the 
solution of (3) represents the discrete analogue the exact solution of the system 
(1)–(2), see [2] for detail. 
     The stress intensity factors, SIF, at the right and left ends (designated by 
plus/minus respectively) are found by interpolation as follows 
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It is evident that the accuracy of the numerical solution is reduced if the RHS in 
(1) has discontinuities. In particular for concentrated loads the system (3) would 
produce trivial solutions. For step-like or piecewise loads the solution for a 
single rectilinear crack requires the use of a large number of nodes and 
collocation points to reach the accuracy within 0.1% (depending on the length of 
the loaded part). 
     For concentrated loads of intensity P0 applied at the crack middle Savruk [1] 
suggested to seek solution as the sum of two functions 

 )()()( 21 tgtgtg                                                (7) 

     These satisfy the following SIEs  
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where δ(x) is the Dirac delta function, and 
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The advantage of this decomposition is that the latter SIE has a continuous RHS 
that can be approximated by a polynomial while the solution of the former SIE is 
expressed in the analytical form. 
     In this study we suggest to use a somewhat similar decomposition in 
application for the step-like loads, i.e. to replace SIE (8) by the following SIE 
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where p(x) is a differentiable function and H(x) is the Heaviside step function.  
     Hereafter it is assumed that half-length of the crack is unity. 
     The solution of (10) unbounded at both ends can be expressed in analytical 
form via the formula 
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where, without loss of generality, one can assume C=0, which satisfies the 
condition in (2). This solution substituted into the second line of (9) determines 
the smooth RHS of (9) which is used further on to compute a numerical solution 
for g2(x) by the standard numerical scheme resulting in SLAE (3).  

     The stress intensity factors   )1()1(
III iKK  resulting from (10) are found by 

the following integral  
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while the SIFs   )2()2(
III iKK resulting from SIE (9) are calculated by formula 

(6). Finally the total stress intensity factors is found as the sum  
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In the special case p(x)=p0=const the solution for g1(t) and the SIFs 
corresponding to this solution assume the form 
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where 
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The stress intensity factors for a single crack loaded by the constant step-like 
load on the interval (a,b) are calculated by the following formula 
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The accuracy of the solution is examined in the following section for one special 
case a=-b for which the SIFs in (16) assume the form 
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This SIF will be use further on for comparisons and normalisation. 

3 Validation 

3.1 Benchmark problem 

We further consider a benchmark SIE as follows 
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where the kernel L(x,t)=0 and the kernel K (t,x)=K1(t)K2(x) is degenerated and 
p0=const. 
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     The solution of (18) can be found as follows.  
     Firstly let us denote 
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and rewrite (18) in the form 
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An unbounded solution of (20) satisfying (2) can be presented in the form 
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The former integral in the RHS of (21) is evaluated in the form 
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By denoting  
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one can present the solution in the form (|t|<1) 
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The constant C1 is found by multiplication of (9) by K1(t)/ followed by 
integration 
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where 
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The stress intensity factors are found by limiting transition by letting t tend to the 
ends (denoted as “+” for the right end and “-” for the left one) 
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For example, let us assume 
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and (due to an odd integrand) 
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The SIFs become 
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In this case the accuracy of the numerical solution for the SIFs is mainly defined 
by the accuracy of the calculation of the integral for C1. For the tolerance of 10-5 
in software MATHCAD 6+ used for calculation of the integral in (10) with the 
integrand with the logarithmic function and n=4 the numerical solution is 
accurate within 6 significant digits for 10-4<b<1. 

Boundary Elements and Other Mesh Reduction Methods XXXVII  209

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press



3.2 Two parallel cracks 

Let us compute the SIFs for the case of two parallel cracks of the same size 
subjected to the same step-like loads of unit intensity p0=1. This configuration is 
shown in Fig. 1, it is characterised by is the distance, d, between the crack 
centres, the angle, , between the line connecting the crack centres and the 
cracks and the size of the loaded part 2b. 

2b

2b

d

1-1 x



2b2b2b

2b2b

d

1-1 x



 

Figure 1: Two parallel shifted cracks. 

     In this case the kernels can be derived from the form presented in [1] as 
follows 
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For =0 the cracks are collinear and for =/2 they are parallel as shown in 
Fig. 2. 
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Figure 2: Collinear and parallel cracks under step=like loads. 

     Calculations have been performed for two configurations presented in Fig. 2. 
Verifications have been performed for the case b=1 (fully loaded crack) to 
compare the results with those presented in [1] and [3]. The results of 
calculations are summarised in Table 1 for the case of collinear cracks (Fig. 2(a) 
and (b) and in Table 2 for the case of parallel cracks (Fig. 2(b)). The data in the 
tables show SIFs are normalised by the stress intensity factor for a crack loaded 

210  Boundary Elements and Other Mesh Reduction Methods XXXVII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press



by a constant normal load p0, i.e. by KI=p0(l)1/2, where the crack half-length 
l =1. 
     Table 1 presents KI for the inner and outer ends of the collinear cracks in the 
form (KI

inner, KI
otter). Table 2 shows SIFs for parallel cracks in the complex form 

KI+iKII.  The first rows in both tables correspond to the case b=1, these results 
coincide with the known solutions presented in [1] and handbook [3]. 
     Graphical representation of the results of the calculated mode I SIFs are 
shown in Fig. 3 for collinear cracks (inner ends) and in Fig. 4 for parallel cracks. 
In both figures the SIFs are normalised by the mode I stress intensity factor for a 
single crack under step-like load given by formula (17). It can be seen that the 
collinear cracks always magnify the SIFs, while the parallel cracks exhibit, so 
called, shielding effect, i.e. the SIFs are smaller than the SIF in (17) for the same 
loads. 

Table 1:  SIFs for collinear cracks under step-like loads for different b and d. 
First data for the inner end, second data for the outer end. 

b\d 2.1 2.25 2.5 3.0 4.0

1.00 1.795, 1.151 1.414, 1.112 1.229, 1.081 1.112, 1.052 1.048, 1.028 

0.95 1.569, 0.946 1.203, 0.908 1.023, 0.878 0.909, 0.849 0.845, 0.825 

0.90 1.449, 0.856 1.103, 0.820 0.931, 0.791 0.821, 0.762 0.759, 0.740 

0.75 1.156, 0.664 0.873, 0.633 0.729, 0.608 0.634, 0.584 0.581, 0.564 

0.50 0.741, 0.419 0.559, 0.398 0.463, 0.381 0.399, 0.364 0.362, 0.350 

0.25 0.364, 0.204 0.274, 0.194 0.227, 0.185 0.195, 0.177 0.176, 0.170 

0.10 0.145, 0.081 0.109, 0.077 0.090, 0.074 0.077, 0.070 0.070, 0.067 

0.05 0.072, 0.041 0.054, 0.039 0.045, 0.037 0.039, 0.035 0.035, 0.034 

Table 2:  SIFs for parallel cracks under step-like loads for different b and d. 

b\d 0.4 0.8 1.0 2.0 4.0

1.00 0.721+0.163i 0.758+0.13i 0.773+0.117i 0.843+0.061i 0.930+0.016i 

0.95 0.527+0.163i 0.560+0.130i 0.575+0.116i 0.643+0.061i 0.729+0.016i 

0.90 0.456+0.161i 0.482+0.128i 0.496+0.114i 0.561+0.060i 0.645+0.016i 

0.75 0.336+0.143i 0.343+0.119i 0.351+0.106i 0.404+0.054i 0.479+0.014i 

0.50 0.208+0.097i 0.204+0.088i 0.205+0.080i 0.236+0.041i 0.290+0.010i 

0.25 0.101+0.048i 0.098+0.046i 0.097+0.042i 0.110+0.022i 0.138+0.005i 

0.10 0.040+0.019i 0.039+0.018i 0.038+0.017i 0.043+0.009i 0.055+0.002i 

0.05 0.020+0.010i 0.019+0.009i 0.019+0.009i 0.022+0.004i 0.027+0.001i 
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Figure 3: Dimensionless KI for the inner ends of two collinear cracks vs. b for 
different d. 

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

d=0.4
d=0.8
d=1.0
d=2.0
d=4.0

Figure 4: Dimensionless mode I stress intensity factor for two parallel cracks 
vs. b for different d. 

4 Conclusions 

The paper presents an effective technique to numerical solutions of singular 
integral equations for plane crack systems subjected to discontinuous loads. 
Verifications performed for the benchmark equation specified in subsection 3.1 
revealed effectiveness of the proposed approach. Applications for the case of two 
collinear cracks also agree with semi-analytical solutions in [3]. The solutions 
for parallel cracks reveal the existence of the shielding effect for the range of the 
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parameters studied. The later results can be used for advanced design of multi-
stage hydrofractures in elastic reservoirs. 
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