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Abstract 

The scale of large finite element (FE) models may nowadays easily exceed 107 or 
even 108 degrees of freedom (DOF), leading to excessive calculation times when 
performing transient simulations. Such long simulation times hinder effective 
structural or thermal design and optimization and make any engineering insight 
into a problem difficult. The Krylov subspace-based model order reduction 
(MOR) is a reduction method based on projection of a discretized model onto a 
lower dimension subspace. The paper presents a methodology based on this 
method in the context of thermal transient simulation of a large scale subsea 
equipment FE model. The finite element model mesh size exceeds 30 × 106 DOFs. 
The problem has nonzero initial conditions (ICs) and has to be transformed into a 
problem with zero ICs in order to apply the Krylov based MOR. Coupling the 
Krylov based MOR models employs a novel technique involving coupling through 
their surface interfaces. The approach is compared with the solution obtained using 
a full FE simulation which takes about 7 days to solve with a fine time step. The 
results are compared using an error norm which computes maximum absolute 
difference of temperature fields over time taking the full FE simulation with the 
fine time step as a reference. The study shows that applying the proposed method 
using Krylov MOR for performing thermal transient simulations is valid and leads 
to substantial reduction of the computational time. 
Keywords:  model order reduction, substructuring, heat transfer. 
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1 Introduction 

Oil discoveries are becoming more marginal and more challenging to develop due 
to e.g. deep water and challenging environments. Consequently, subsea tieback to 
a central processing facility is becoming increasingly attractive. Currently, subsea 
developments are the preferred option for many fields and often the only 
economically viable option. A typical subsea field includes subsea wells and a 
subsea production system featuring well control and commingling of flow together 
with flow lines and risers.  
     For successful operation of subsea oil and gas fields, good control of the 
thermal behaviour of the subsea production system, flow lines and risers is 
essential for stable operation and high uptime of the whole field. Therefore, the 
whole subsea system is designed to prevent heat loss both during normal operation 
and in a shutdown situation. Most of the technologies for temperature control 
include thermal insulation. For the subsea production system in specific, with 
Xmas Trees for well control, manifolds and connections, thermal insulation is the 
main solution.  
     For a typical deep-water oil field, the subsea production system must be kept 
warm during normal production, but also in case of a shutdown. When the well 
fluid is cooled at shutdown, there is a risk of forming gas hydrates, unless 
preventive actions are taken upfront. Gas hydrates only exist at low temperatures 
(typically seawater temperatures) and at high pressure, and can block the whole 
subsea production system if not avoided. The thermal insulation is required to 
allow the operator of the field to take the required preventive actions before the 
whole field is cooled down. If no time is available, the consequence may be 
months of lost production due to hydrate plugs in the system. Therefore, a certain 
cool down time of the production fluid, typically six to thirteen hours, is required 
to slow down the cooling of the production fluid in case of an unplanned shutdown. 
For each field, this cool down time requirement is investigated and verified 
through thermal analyses, usually performed using FEA or CFD, in the field’s 
design phase.  
     In the subsea production system there are many items, such as valves, sensors, 
and connections that cannot be fully covered with insulation to be able to function 
properly. Hence, a typical manifold may consist of well-insulated areas and areas 
without insulation that are draining heat out of the system. The total thermal 
performance is highly dominated by these uninsulated cold spots. To obtain an 
insulation design of the subsea production system that fulfils the field’s cool down 
requirement, extensive thermal 3D modelling is required, typically of both small 
sensors and large manifolds. The phenomena to investigate include conduction 
and convection, especially natural convection, which are computationally 
intensive for such large models and long cool down times.  
     The simulations are based on numerical models discretizing the equations of 
mass, momentum, and enthalpy, on the 3D model generated by the designer of the 
system. The requirements in terms of grid resolution and time stepping needed to 
achieve good enough accuracy of the results lead to large models, in the range of 
10 to 100 million degrees of freedom, and excessive calculation times. Most 
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calculations performed within the framework of an Engineering, Procurement, and 
Construction (EPC) project are limited to the verification of the proposed 
insulation design. This goes against the demands of the industry, which today 
requires equipment with broadened operational envelopes to meet the increasing 
difficulty in extracting the oil left in the North Sea, and the deepwater fields off 
the coasts of Brazil and Africa. 
     In this context substructuring [1], and model order reduction, [2–4], appear as 
a means of decreasing drastically preprocessing and calculation times, and open 
the way to a more robust design by allowing investigation of the sensitivity of the 
design to input parameters. A detailed overview of available model order reduction 
methods can be found in [2], while recent developments of model reduction by 
projection on a Krylov subspace can be found in [5, 6], and [8]. One of the most 
important directions in the development of Krylov-based reductions is parametric 
model order reduction (PMOR). PMOR allows preservation of parameters which 
the system depends on (see [7] and [11]). Another important avenue of research 
pioneered in [9] and further developed in [10], is the extension of Krylov-based 
MOR to nonlinear systems and convective flows. 
     The overall aim of the present document is to establish a methodology 
integrating the use of substructuring and model order reduction in the simulation 
of the thermal cool down of a subsea manifold (see Figure 1). 
     This paper is organized as follows; first, the technical problem is presented in 
section 2. The solution methodology to be evaluated is outlined in section 3. The 
results are presented in section 4, and a discussion of these is led in section 5. 
Section 6 summarizes and concludes the work presented in the paper. 

2 Problem statement 

The heat transfer between the production fluid, metal bodies, and insulation layers 
in subsea equipment is modelled by the transient heat transfer equation,  

௧ܶ ൅
݇
௣ܥߩ

௜ܶ,௜ ൌ 0, (1) 

with	݇,	,ߩ	ܥ௣	being thermal conductivity in Wm-1K-1, density in kg m-3, and thermal 
capacity of the materials in J.kg-1.K-1.	 ௧ܶ 	denotes the derivative of the temperature 
according to time, while	 ௜ܶ,௜ 	denotes the Laplacian of the temperature field. 
     The convective fluid flow of the production fluid imprisoned within the piping 
system is modelled with a thermal conductivity high enough to account for the 
global effects of convection on the temperature distribution in the fluid. 
Obviously, no local effects or natural convection boundary layers can be modelled 
in this way. We choose to ignore this and will consider the application of model 
order reduction to convective flows in later studies. 
     The discretization in space of the manifold of interest (see Figure 1), is not the 
object of this paper. Thus Figure 2 shows an example of the type of mesh generated 
for this type of calculation, and is taken as the starting point of the methodology 
presented in section 3. In addition, the results presented in section 4 are compared 
to reference results obtained by solving the full problem, whose mesh is shown in 
Figure 2, in physical space and time. 
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Figure 1: Manifold and its 
substructures.	

	
	
	
	

	

Figure 2: Manifold mesh. 

     Steady state heat transfer within the manifold implies a constant flow of 
production fluid, at a fixed temperature, in the piping system. Surfaces in contact 
with sea water were assigned a constant temperature of 4°C. 
     Transient heat transfer within the manifold implies production shutdown, with 
the far boundaries modelled as adiabatic boundary conditions. This assumes that	
cool down is uniform on both sides of the boundary. 	

3 Solution methodology 

This section presents the two main mathematical techniques that are used in this 
study, namely model order reduction of linear dynamical systems (see section 3.1), 
and coupling of substructured and reduced models of large finite element models 
(see section 3.2). 
     We consider linear time invariant (LTI) systems with zero initial conditions of 
the form	

ሶࢀ࡯ ൅ ࢀࡷ ൌ ,ݑࢗ (2) 

where ܶሺݐሻ ∈ Թேൈଵ and  ݑሺݐሻ ∈ Թ denote the states and input of the system, 
respectively. The dynamics of the system are described by ࡷ,࡯	 ∈ 	Թேൈே and	ࢗ	 ∈
	Թ୒ൈଵ. In the context of heat transfer within a subsea production system 
component, ࡯  is the matrix of heat capacity at the discretization nodes and ࡷ is 
the matrix of heat conductance between internal nodes.  It is assumed that C is 
non-singular; detሺ࡯ሻ 	് 	0, which is usually the case for a mesh with non-negative 
volumes. 
     The goal of model order reduction is to approximate the large-scale system (2), 
e.g. with	ܰ	 ൌ 	10ହ …10଼, by one of much smaller dimension	݊ ≪ ܰ. In 
projection-based model reduction, this is carried out by appropriate projection 
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matrices	ࢃ,ࢂ	 ∈ 	Թேൈ௡, leading to a reduced system with state-space 
representation 

࢘࡯ ሶ࣎ ൅ ࣎࢘ࡷ ൌ  (3) ,ݑ࢘ࢗ

where	࢘࡯ ൌ ࢘ࡷ ,ࢂ࡯ࢀࢃ ൌ ࢘ࢗ and ࢂࡷࢀࢃ ൌ  The reduced system (3) is .ࢗࢀࢃ
called a Petrov-Galerkin projection of (2) [2]. The generalized coordinates τ are 
defined as 

ࢀ ൌ ࣎ࢂ ൅  (4) ,ࢿ

where ࢿ	 ∈ 	Թேൈଵ is the matrix of error.  
 

3.1 Model order reduction 

Model order reduction (MOR) aims at the approximation of large-scale dynamical 
systems by another model of reduced order. For the reduction of LTI systems 
different approaches have been shown to be well suited, such as Truncated 
Balanced Realization (TBR) [2] or Krylov subspace methods [3, 4]. 
     In this study the projection matrix ࢂ (or ࢃ) is chosen to span certain rational 
Krylov subspaces. 
     A Krylov subspace is generally defined as 

ሻܰ,ܯ௞ሺܭ ൌ spanሼࡺࡹ,ࡺ,…  ሽ. (5)ࡺ௞ିଵࡹ,

In the particular case of system (2), and after selecting a complex valued expansion 
point s୧ ∈ ԧ and a desired multiplicity m୧ ∈ Գାthe matrices N and M read 

ࡺ ൌ ሺࡷ ൅ ,ࡽሻିଵ࡯௜ݏ ࡹ ൌ ሺࡷ ൅  (6) ,࡯ሻିଵ࡯௜ݏ

Then the Krylov subspace reads 

௦೔ܭ
௠೔ሺࡷ, ሻ࡯ ൌ ࡷ௠೔ሺሺܭ ൅ ,ࡽሻିଵ࡯௜ݏ ሺࡷ ൅  ሻ. (7)࡯ሻିଵ࡯௜ݏ

If the projection matrix V then is computed to span the union of certain Krylov 
subspaces, 

spanሺࢂሻ ⊇ ௦೔ܭ
௠೔, ݅ ൌ 1,… ,  (8) ݎ

the reduced model (3) matches ݉௜	moments of the transfer function of (2) around 
the respective expansion points ݏ௜, if ݏ௜ is neither an eigenvalue of (2) nor an 
eigenvalue of (3) [2–4]. The ݉௜ moments are defined as the coefficients of the 
Taylor series expansion of the transfer function ܪሺݏሻ ൌ ሺݏ௜ܥ ൅  .௜ݏ ሻܳ aroundܭ
     The projection matrix ࢂ is obtained by Arnoldi iteration, which means that 
ࢃ ൌ  due to the block Arnoldi algorithm being one sided. The first step in this ࢂ
process is to choose the first Arnoldi vector		ݒଵ ൌ ࡺ ⁄ଶ‖ࡺ‖ . Then, the subsequent 
steps consist in a multiplication, for ݆	 ൌ 	1, 2, … , ݊, of the current Arnoldi vector 
 ௝ against all previousݒܯ  followed by orthonormalization of the product ,ࡹ ௝ byݒ
Arnoldi vectors. This procedure is summarized in Algorithm 1, where the vectors 
w୨	are the intermediate un-normalized vectors. 
 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

Boundary Elements and Other Mesh Reduction Methods XXXVII  181



Algorithm 1 Arnoldi iteration (classical Gram-Schmidt variant) 
ଵݒ  ൌ ܰ ‖ܰ‖ଶ⁄  
 for ݆	 ൌ 	1, 2, … , ݊ do 
   for ݅	 ൌ 	1, 2, … , ݆ do 
     ݄௜௝ ൌ ൫ݒܯ௝,  ௜൯ݒ
   end for 

௝ݓ		  ൌ ௝ݒܯ െ෍ ݄௜௝ݒ௜
௝

௜ୀଵ
 

 ௝݄ାଵ,௝ ൌ  ௝‖ଶݓ‖
   if ௝݄ାଵ,௝ ൌ 0, then Stop 
௝ାଵݒ    ൌ /௝ݓ ௝݄ାଵ,௝ 
 end for 

 
 
 
 

     A second product of the Arnoldi iteration is the rectangular Hessenberg matrix 
௡ࡴ ∈ Թሺ୬ାଵሻൈ୬. If breakdown occurs in the n-th step, w୬ ൌ 0 is still well-defined 
but not ܖܞା૚, and the algorithm stops. In this case the last row of ࢔ࡴ is set to zero, 
݄௡ାଵ ൌ 0. 

3.2 Coupling of reduced components 

The assembly of reduced substructures, typically a set of valves, dead legs, and 
header, is outlined in this section. In the following, ݎ denotes the order of the 
reduced order models and ݊ denotes the number of reduced substructures being 
coupled together. 
     Any reduced order model of a substructure may be written as  

ࢂሺ௦ሻ࡯ ሶ࣎ ሺ௦ሻሺݐሻ ൅ ሻݐሺ௦ሻሺ࣎ࢂሺ௦ሻࡷ ൌ ሻݐሺݑሺ௦ሻࢗ ൅ ሺ௦ሻࢍ ൅  ሺ௦ሻ. (9)ࡾ

gሺୱሻ ∈ Թ୒ is the vector of connection fluxes between substructure s and its direct 
neighbours, and ܀ሺ௦ሻ is the vector of reaction forces between substructures and its 
neighbours. Multiplying on the left by	்ࢂ,  

ࢂሺ௦ሻ࡯்ࢂ ሶ߬ ሺ௦ሻሺݐሻ ൅ ሻݐሺ௦ሻሺ࣎ࢂሺ௦ሻࡷ்ࢂ ൌ ሻݐሺݑሺ௦ሻ்ࢗࢂ ൅ ሺ௦ሻࢍ்ࢂ ൅  ሺ௦ሻ. (10)ࡾ்ࢂ

the term ࡾ்ࢂሺ௦ሻ	is enforced to be equal to 0, following from the nature of the 
projection matrix ்ࢂ with is a Petrov-Galerkin projector. It follows that 
the coupled model of n substructures is expressed as 

࢘࡯ ሶ࣎ ൅ ࣎࢘ࡷ ൌ ࢘ࢗ ൅ ࢘ࢍ
࢘࡯	 ൌ ࢂ࡯ࢀࢂ
࢘ࡷ ൌ ࢂࡷࢀࢂ
࢘ࢗ ൌ ࢗࢀࢂ
࢘ࢍ ൌ ࢍࢀࢂ

 (11) 

     At the interface between neighboring coupled substructures, compatibility of 
nodal temperatures and conservation of heat leads to two constraints on the nodal 
temperatures, (12), and heat fluxes at the substructure boundary (13) 
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࣎࢘࡮ ൌ 0, (12) 
࢘ࢍࢀ࢘ࡸ ൌ 0. (13) 

In (12) matrix ࢘࡮ ∈ Թୠ is a signed Boolean matrix in the case of conformal 
boundary between substructure ݏ and its neighbors. If the interface is not 
conforming, ࢘࡮ is a general matrix. Similarly, in (13) matrix ࢘ࡸ  imposes that the 
sum of nodal fluxes at the interface is zero, be that in the case of a conformal or 
general interface. A discussion and detailed explanation of the formation of these 
coupling matrices is found in the appendix of reference [2]. Only a general 
overview is given in the following. 
     The unique generalized coordinates φ satisfying the compatibility condition are 
found as 

࣐࢘ࡸ ൌ ࣎, (14) 
which leads to 

ൌ࣎࢘࡮ ࣐࢘ࡸ࢘࡮ ൌ ૙ ∀࣐. (15) 

It follows that L୰ is the kernel of B୰. 
     The global coupled model of n substructures has therefore the following form 

࢘࡯ ሶ࣎ ൅ ࣎࢘ࡷ ൌ ࢘ࢗ ൅ ࢘ࢍ
࣎࢘࡮ ൌ ૙
࢘ࢍࢀ࢘ࡸ ൌ ૙

 (16) 

     The equilibrium condition is imposed only weakly, in the sense that  
࢘ࢍࢀ࢘ࡸ ൌ ࢍࢀࢂࢀ࢘ࡸ ൌ 0. (17) 

The global assembled reduced system using unique generalized coordinates have 
then the form of 

෪࢘࡯ ሶ࣐ ൅ ෪࣐࢘ࡷ ൌ ෦࢘ࢗ
෪࢘࡯	 ൌ ࢘ࡸ࢘࡯ࢀ࢘ࡸ
෪࢘ࡷ ൌ ࢘ࡸ࢘ࡷࢀ࢘ࡸ
෦࢘ࢗ ൌ ࢘ࢗࢀ࢘ࡸ

 (18) 

 

     The global assembled reduced system of equations describes a reduced order 
approximation of the global assembled system of equations. The quality of the 
approximation is given by the model order reduction method put to use. 
The selection of suitable model order reduction method is crucial in making the 
approximation reasonably small.  
     Substructuring allows division of the computation domain into smaller parts in 
a framework allowing coupling at a later stage. It also enables coupling between 
substructures belonging to different assemblies, provided that the interface is 
conforming. However, the main contribution of substructuring lies in the 
possibility of coupling reduced structures. It is much more computationally 
effective to reduce a set of small substructures than to reduce the whole structure. 
It is also straightforward to parallelize the computation of a large number of 
substructures making it again much more efficient. Another advantage is the 
possibility of coupling structures made at different stages of the project work, 
possibly by different persons.  
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3.3 Solution procedure 

The solution procedure consists of the following steps: 
1. Model order reduction of substructures; 
2. Coupling of reduced order models of each substructure with each other 

into a complete reduced order model; 
3. Steady-state analysis; 
4. Transfer of the obtained  temperature distribution to the model used for 

cool down analysis; 
5. Transient analysis of the cool down; 
6. Transformation to physical coordinates; 
7. Postprocessing. 

     A reduced-order model of each substructure, following the procedure outlined 
in section 3.1, is generated. The substructures need not be in the same coordinate 
system. The Arnoldi algorithm used to generate the projection matrix on a Krylov 
subspace characterizing the original LTI system is implemented in ANSYS 
APDL. Reordering of matrices and other necessary processing was implemented 
in MATLAB 12a.  The output of the Arnoldi algorithm is the projector matrix ࢂ 
for each substructure. This projection matrix is then used to reduce the system 
matrices to arrive at (11). All reduced models need then to be coupled and 
assembled into a single reduced order model of the discretized heat transfer 
equations in generalized coordinates. The model can then be solved to a steady-
state solution, which is then used as initial condition to a transient cool-down 
analysis performed with help of a four step Runge-Kutta algorithm. In (2) we have 
considered only zero initial conditions. To zero out the initial conditions this 
transformation is used 

ܶሺݐሻ ൌ ෨ܶሺݐሻ ൅ ଴ܶ,	 
ሶܶ ሺݐሻ ൌ ෨ܶ	ሶ ሺݐሻ. 

Then in new coordinates ෨ܶሺݐሻ the initial conditions are ෨ܶሺ0ሻ ൌ 0,	and system (2) 
reads 

ܥ ෨ܶ	ሶ ൅ ܭ	 ෨ܶ ൌ ܳ െ ܭ ଴ܶ 
෨ܶሺ0ሻ ൌ 0. 

 
The transformation to physical coordinates with help of (4) can then be performed, 
followed by postprocessing of the obtained solution. 

4 Results 

In this section two sets of results are presented. The first set consists of 
computational times and cool down curves obtained by a conventional finite 
element method, where the discretization in time is performed on a full model. 
The second set consists of the computational times and cool down curves obtained 
with a model consisting of coupled reduced substructures. 
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4.1 Steady state solution 

The steady state solution of the full model was conducted in ANSYS APDL, on a 
model with 32.6 × 106 nodes. The solution took about 2.5 hours. The resulting 
temperature field was then transferred to the cool down simulation, section 4.2, as 
initial condition. 
     Steady state solution of the reduced order model was conducted in MATLAB, 
within 0.2 s. The resulting temperature field was then transferred to the reduced 
order model obtained for the steady state boundary conditions, see section 2. 
Generation of the reduced order models necessitated 0.8 hours. 

4.2 Transient solution 

The transient solution of the full model with production shutdown and with initial 
condition from the steady state solution was run for a total duration of 13 hours, 
with two time stepping strategies:  
 

1. Initial time step of 1 s, with a minimum time step of 1s and a maximum 
time step of 3600s; 

2. Initial time step of 1 s, with a minimum time step of 1s and a maximum 
time step of 900s. 

 
The machine run times for time stepping strategies 1 and 2 were 72 hours and 121 
hours, respectively, with time integration performed by generalized trapezoidal 
rule. 
     On the reduced order model, the cool down simulation necessitated 10 s. The 
time step used in the transient solution of the reduced order model was 1 s, for a 
total simulated duration of 13 hours. 

5 Discussion 

The convergence of model order reduction is captured in Figure 3. The graph 
compares the cool down of the manifold simulated using the full model in ANSYS 
for the second time stepping strategy presented in section 4.2 against the 
simulations using Krylov model order reduction. The transient solution is shown 
for one nodal temperature in the model. Krylov model order reduction is presented 
for orders of reduction ݊ = 4, 10, 20.  The transient simulation was run in 
MATLAB using the ode15s solver. 
     The graph shows very good agreement between reduced model simulations and 
the full model simulation. Difference between reduced models and full model at 
the end of the simulation is 0.08°C, 0.07°C, 0.07°C for reduction orders ݊	= 4, 10 
and 20 respectively. At the end of the simulations the reduced order models have 
lower temperature, which in the context of flow assurance calculations is 
acceptable. 
     The solution obtained with a reduction order of 4 exhibits slight deviation at 
the beginning of the simulation, the error being less than 0.2°C. This error vanishes 
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with time so even reduced models of order 4 may serve as good approximation of 
the full model. In order to assess the reduction model thoroughly following error 
metric ߝ is suggested 

ߝ ൌ max
௜
ሺmax ௜ࢀ| െ  ሻ (19)|࢏࣎ࢂ

where ࢀ௜ is the vector of temperatures from the full model simulation at time step 
݅ and ߬௜ is vector of generalized temperature from the reduced order model 
simulation at time step ݅. ࢂ is the projection matrix. The error metric is the 
maximum of the maximum value of the absolute difference between temperatures 
of the full model and the expanded reduced order model. For the manifold the 
value of the error metric is ε=0.16°C 	for a reduced model of order 20. 
The low value of error metric implies very good overall approximation of the full 
model by a reduced order model. Simulation of manifold cool down with model 
order reduction is faster by more than 10 times compared to the cool down 
simulation of the full model in ANSYS. 
     There are two simulations – steady state and transient. Hence, it is necessary to 
reduce the substructure for each simulation. Any change in the boundary condition 
leads to the need of a new reducing step for each substructure. 

 

 

Figure 3: Transient simulation times and profile for the full model solved using 
implicit time stepping and reduced model with reduction order 4, 10, 
20 advanced in time by a four-step Runge Kutta algorithm. 

6 Conclusions 

A methodology integrating the use of substructuring and model order reduction 
for the fast simulation of the thermal steady state and transient solutions of subsea 
equipment has been established. 
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     The heat transfer by convection in the production fluid is mimicked in this work 
by the use of a high thermal conductivity. This does not detract from the method 
itself, but ongoing work aims at removing this limitation by extension of model 
order reduction by projection on a Krylov subspace to nonlinear convective 
transport.  
     Further work involves the development of methods allowing the reduction of 
models independently of the initial conditions, and valid for a wide range of 
boundary conditions. This type of development is called PMOR, as named in the 
introduction to this paper. 
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