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Abstract

In this paper we examine the properties of steady and unsteady diffusion
fundamental solutions in the framework of fast BEM. The fundamental solutions
and their kernels form integral kernels in boundary integral equations. The
properties of these kernels define the relationship between CPU time and storage
gain versus the accuracy of sparse approximations in fast BEM.

We show that, when solving a diffusion type problem, using unsteady
fundamental solutions is advantageous over steady fundamental solutions. We
examine the behaviour of fundamental solutions to show why the unsteady
fundamental solution is better for fast BEM. Furthermore, we confirm the
theoretical findings by simulation of viscous fluid flow and heat transfer. We
consider steady cases, where a false transient approach is used so unsteady
diffusion fundamental solutions may be employed. Finally, we examine cases of
increasing non-linearity, to highlight that these findings apply to strongly non-
linear problems as well.
Keywords: steady diffusion, unsteady diffusion, wavelet transform, sparse
approximation, integral kernel, fast BEM.

1 Introduction

One of the main impediments of the boundary element method (BEM) is the
need for solving large, fully populated, linear systems of equations resulting from
numerical discretization of the governing equations. In cases of non-linear or non-
homogenous partial differential equations domain discretization is needed, which
requires even larger fully populated matrices.

In the last decade several approaches have been proposed to overcome this
disadvantage. They are known as fast BEM as their purpose is to reduce the
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required computational resources from the O(n2) dependence of the original BEM
to O(n logn) or O(n) of the fast BEM. Here, n represents the number of nodes in
the computational mesh.

One of the ideas of fast BEM is the construction of data sparse approximations
of fully populated matrices. Hackbusch and Nowak [10] developed a panel
clustering method, which enables approximate matrix vector multiplications
with decreased amount of arithmetical work. A class of hierarchical matrices
was introduced by Hackbusch [9] with the aim of reducing the complexity of
matrix-vector multiplications. Bebendorf and Rjasanow [2] developed an algebraic
approach for solving integral equations using collocation methods with almost
linear complexity. Ravnik et al. [14] developed a wavelet compression method
and used it for compression of single domain BEM in 2D. The fast multipole
method, which has been developed for particle simulations by Greengard and
Rokhlin [6] has also been used with BEM. The algorithm decreases the amount
of work required to evaluate mutual interaction of particles by reducing the
complexity of the problem from quadratic to linear. Ever since, the method was
used by many authors for a wide variety of problems using different expansion
strategies. Bui et al. [4] combined FMM with the Fourier transform to study
multiple bubbles dynamics. Gumerov and Duraiswani [8] applied the FMM for the
biharmonic equation in three dimensions. The boundary integral Laplace equation
was accelerated with FMM by Popov et al. [13]. Ravnik et al. [16] compared
wavelet and fast multipole data sparse approximations for boundary–domain
integral equations of Poisson type. Koro and Abe worked on developing a practical
determination strategy of optimal threshold parameter for matrix compression in
wavelet BEM [11]. Xiao et al. [21] developed an a-posteriori technique for BEM
compression. Bucher et al. [3] studied the application of fast wavelet transforms.

Although these methods all yield nearly linear or linear scaling of computing
resources with mesh size, their success still depends on the type of the integral
kernel. Namely, when n is not very large, the compression ratios of these methods
may not be very good, i.e., maybe a sparse representation of the BEM matrix has
50% of the data of the original matrix. In such cases, these methods are useless,
since a 50% reduction does not enable a mesh density increase, which would have
a significant effect on the physics that needs to be simulated. In other words, by
only halving the computer resources, we are not able to simulate any new physical
phenomena.

Fortunately, the compression ratio depends on the choice of the fundamental
solution. In this work, we analyse the effect of making the steady diffusion
equation unsteady by introducing an artificial accumulation term, i.e. we use the
false transient approach. In this case, parabolic diffusion fundamental solution
may be used instead of the Laplace fundamental solution. We will show, that the
compression ratios achieved in this case are much greater than when using the
Laplace fundamental solution.
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2 Analysis of diffusion fundamental solutions

2.1 Steady diffusion

The steady state diffusion equation reads

α0∇2u(�r) = 0, �r ∈ Ω (1)

where α0 is a constant diffusivity term, �r is the location vector defined in the
domain Ω and u(�r) is the field function. The 3D and 2D fundamental solutions
and their gradients of this equation are

u�
3D =

1

4πα0|�ξ − �r|
, u�

2D =
1

2πα0
ln

1

|�ξ − �r|
, (2)

�∇u�
3D =

�ξ − �r

4πα0|�ξ − �r|3
, �∇u�

2D =
�ξ − �r

2πα0|�ξ − �r|2
, (3)

where �ξ is the source point. All expressions in (2) and (3) are singular at �r = �ξ and
diminish as |�ξ − �r| increases.

2.2 Unsteady diffusion

The fundamental solution of the unsteady diffusion equation

∂u

∂t
= α0∇2u (4)

is a free-space Green’s function, describing the function field generated by a unit
source applied at a point �ξ at time t0, i.e.

u�(�r, �ξ, t, tF ) =
1

(4πα0(tF − t))3/2
exp

(
− (�ξ − �r)2

4α0(tF − t)

)
, t ≥ t0. (5)

The gradient of the fundamental solution is

�∇u�(�r, �ξ, t, tF ) =
(�ξ − �r)

16π3/2(α0(tF − t))5/2
exp

(
− (�ξ − �r)2

4α0(tF − t)

)
(6)

The integral form of equation (4) is (Wrobel [20]):

c(�ξ)u(�ξ, tF ) + α0

∫ tF

t0

∫
Γ

u(�r, t)�∇u� · d�Γdt = α0

∫ tF

t0

∫
Γ

u��∇u(�r, t) · d�Γdt

+

∫
Ω

u(�r, t0)u
�(�r, �ξ, t0, tF )dΩ, (7)

where c(�ξ) is the geometric factor defined as c(�ξ) = β/4π, where β is the inner
angle with origin in �ξ. If �ξ lies inside of the domain then c(�ξ) = 1; c(�ξ) = 1/2,
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if �ξ lies on a smooth boundary; and Γ = ∂Ω is the boundary of the domain. If
we consider that the field function does not change within a time step (i.e. we
consider constant time interpolation) we may change the order of integrals and
integrate over time:

ũ� = lim
t1→tF

∫ t1

t0

u�(�r, �ξ, t, tF )dt =
1

4πα0|�ξ − �r|
erfc

⎛
⎝
√

(�ξ − �r)2

4α0Δt

⎞
⎠ , (8)

where Δt = t1 − t0. For long time steps ũ� reduces to the Laplace fundamental
solution (2). The time integral of the gradient of u� is

�∇ũ� = lim
t1→tF

∫ t1

t0

�∇u�(�r, �ξ, t, tF )dt =
(�ξ − �r)

2π3/2α0|�ξ − �r|3
·

·

⎡
⎣
⎛
⎝
√

(�ξ − �r)2

4α0Δt

⎞
⎠ exp

(
− (�ξ − �r)2

4α0Δt

)
+

√
π

2
erfc

⎛
⎝
√

(�ξ − �r)2

4α0Δt

⎞
⎠
⎤
⎦ , (9)

which for long time steps reduces to the gradient of the diffusion fundamental
solution (3).

Using the calculated time integrals, we may write the integral form of the
governing equations as:

c(�ξ)u(�ξ, tF ) + α0

∫
Γ

u(�r, t)�∇ũ� · d�Γ = α0

∫
Γ

ũ��∇u(�r, t) · d�Γ

+

∫
Ω

u(�r, t0)u
�(�r, �ξ, t0, t1)dΩ. (10)

During discretization of equation (10) the boundary and domain integrals having
u�, ũ� and �∇ũ� as kernels must be evaluated. In order to observe how these
functions behave, we define a new parameter γ as

γ =

√
(�ξ − �r)2

4α0Δt
. (11)

Then we may express the kernels with γ as:

u� =
1

(4πα0Δt)3/2
exp

(
−γ2

)
, (12)

ũ� =
1

8πα
3/2
0

√
Δt

erfc(γ)

γ
, (13)

�∇ũ� =
1

16πα2
0Δt

[
2√
π

exp(−γ2)

γ
+

erfc(γ)

γ2

] �ξ − �r

|�ξ − �r|
. (14)
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Figure 1: Fundamental solutions and their derivatives versus γ; left: 3D, right 2D.
Dotted line u�, dashed line ũ� and solid line �∇ũ�.

Similar derivation may be performed in 2D, yielding:

u�
2D =

1

4πα0Δt
exp(−γ2), (15)

ũ�
2D =

−Ei(−γ2)

4πα0
, (16)

�∇ũ�
2D =

1

4πα
3/2
0

√
Δt

exp
(
−γ2

)
γ

�ξ − �r

|�ξ − �r|
, (17)

where Ei is the exponential integral function.
In equations (12)–(17) the fundamental solutions and their gradients are

expressed in terms of the parameter γ. Figure 1 shows this dependence in graphs.
We observe, that the values of all functions rapidly decrease as γ increases. At
γ = 5 all are under 10−8.

To get a physical interpretation of the parameter γ let us consider a domain with
a characteristic size L. Usually, L is about equal to the size of the domain (for
internal problems) or it is smaller then the domain size (for external problems),
but it is never significantly larger than the domain size. Thus, we may estimate the
largest distance in the domain to be |�ξ − �r| ≈ L.

On the other hand, the characteristic diffusion time is defined as td = L2

α0
.

In order to have a sufficiently small time step, let us foresee, for example, 100
time steps to reach the characteristic time, i.e. td/Δt = 100. In this case, we can
examine γ at |�ξ − �r| = L, which is

γ =

√
(�ξ − �r)2

4α0Δt
=

√
L2

4α0Δt
=

√
td
4Δt

= 5. (18)

Thus in a typical setting, we can expect values of γ to reach at least 5 or more. As
the integral kernels in equations (12)– (17) are very small for γ >≈ 2, this means
that integrations over 2 ≤ γ ≤ 5 will make a negligibly small contribution to the
final result. This makes kernels (12)–(17) very suitable for compression or sparse
approximation.
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Figure 2: Steady kernels in equations (2) and (3) (dashed) compared to unsteady
kernels (13) and (14) (solid). Left: kernels, right: their gradients.

2.3 Comparison

In order to compare the steady kernels (2)–(3) and unsteady kernels (12)–(17) we
set Δt = 1 and α0 = 1 and compare the kernels versus the distance between
source and field points. The comparison is shown in Figure 2, where it is evident
that although both types of kernels diminish with distance, the unsteady kernels
diminish faster.

3 Numerical experiments

In our previous work (Ravnik et al. [14, 16, 17]) we have developed and used
wavelet compression and sparse approximation techniques aimed at reducing the
computational requirements of our BEM based flow solver (Škerget et al. [18,19],
Ravnik et al. [15]). The methods were aimed at the steady Laplace kernel and
the following conclusions were found: the methods are successful in lowering
the computational requirements and scale nearly linearly. When solving non-
linear fluid dynamics problems, it was found the increasing the non-linearity of
the problem results in lower compression ratios in order to keep the simulation
results accurate. Unfortunately, low compression ratios do not enable a significant
improvement in flow modelling.

In this work, we present a series of tests, where we applied wavelet transform
to a unsteady diffusion type problem. In order to convert a steady Poisson type
PDE into unsteady one, we use the false transient approach [7, 18], where a false
time included in the equation. In this way the equation must be solved in transient
manner until a final steady state solution is reached. The tests were carried out on
the kinematics equation for the solution of boundary vorticity values (Boit-Savart
law). The kinematics equation is

∇2�v + �∇× �ω = 0, (19)

and its false transient counterpart

− 1

α

∂�v

∂t
+∇2�v + �∇× �ω = 0, (20)
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where α is a relaxation parameter, �v fluid velocity and �ω fluid vorticity. Steady
fundamental solution was used for (19) and the unsteady one for (20). Further
details on the implementation of the solution of velocity-vorticity formulation for
natural convection may be found in references.

We consider a 2D natural convection problem in a closed square cavity. The
fluid in the cavity is air and it is put in motion due to buoyancy forces resulting
in heating one vertical wall and cooling the second vertical wall. We assume the
fluid is incompressible and the material properties are constant and do not depend
on temperature. Variations of fluid density are considered only in the buoyancy
term through the Boussinesq approximation. The vertical walls are kept at constant
temperatures, having a temperature difference of ΔT . The top and bottom walls
are adiabatic. No-slip velocity boundary condition is applied on all walls. Non-
dimensional units are used, taking the cavity’s height as the characteristic lengthL.
In this setting the problem is governed by two nondimensional numbers, the
Prandtl number and the Rayleigh number,

Pr =
ν0
α0

= 0.71, Ra =
g0βTΔTL3

ν0α0
, (21)

where the viscosity of air is ν0, the thermal diffusivity is α0, the thermal volume
expansion coefficient is βT and g0 = 9.81m/s2.

We have simulated the phenomenon at temperature differences yielding Ra =
104, Ra = 105 and Ra = 106. The computational mesh had 1612 nodes. The
nodes were concentrated towards the corners of the domain using a geometrical
series where ratio between sizes of the largest and smallest element was 10.

In Table 1 we compare the heat flux through the vertical walls expressed in terms
of the Nusselt number value with benchmark results of other authors. We observe
good agreement.

Next, we performed a series of experiments aimed at investigating the
relationship between the compression and accuracy of simulations. We used time
steps Δt = 10−2, Δt = 10−3 and Δt = 10−4 for calculation of integral kernels in
equation (11). We used wavelet transform for matrices of arbitrary size, developed
by Ravnik et al. [14], to compress the resulting integral matrices. Up to nine
different levels of compression were used for each Rayleigh number and time step,
amounting to a total of 81 simulations.

Figure 3 displays Nusselt number value versus compression. Compression ratio
is defined as the amount of computer storage needed to store the compressed
matrix divided by the computer storage needed for the original fully populated
matrix. We observe that for all Rayleigh numbers considered, the Nusselt number
result is stable up to compression 0.1. For better compression ratio, we observe a
dependence of the Nusselt number on the time step. However, all results are within
1% of the benchmark results obtained without compression. Furthermore, since
non-linearity of the problem increases with Rayleigh number (higher temperature
difference yields stronger buoyancy forces), that the largest differences in Nusselt
number value are found at the highest Rayleigh number value.
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Table 1: Comparison of Nusselt number with benchmark results, no compression
was used.

Ra Lo et al. de Vahl Barakos et al. present
[12] Davies [5] [1]

31× 31 81× 81 161× 161

104 2.244 2.243 2.245 2.2433
105 4.521 4.519 4.510 4.5205
106 8.823 8.8 8.806 8.8198

compression

N
u

10-2 10-1 100
2.24

2.25

2.26

2.27 Ra=104, Δt=10-4

Ra=104, Δt=10-3

Ra=104, Δt=10-2

compression

N
u

10-2 10-1 100
4.51

4.52

4.53

4.54

4.55

4.56 Ra=105, Δt=10-4

Ra=105, Δt=10-3

Ra=105, Δt=10-2

compression

N
u

10-2 10-1 100
8.8

8.82

8.84

8.86

8.88

8.9
Ra=106, Δt=10-4

Ra=106, Δt=10-3

Ra=106, Δt=10-2

Figure 3: Effect of compression on the Nusselt number value.

Figure 4 displays the CPU time needed for the simulation to reach the steady
state result divided by the number of iterations. We observe a big decrease of the
CPU time up to compression ratio 0.1. At higher compression, the CPU time still
decreases, but the additional gain is small.
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Figure 4: Effect of compression on the CPU time per iteration.

Looking at Nusselt numbers in Figure 3 and at CPU times in Figure 4 we can
conclude, that there exists an optimal compression ratio, which maximises the gain
in CPU time and at the same time keeps the simulation accuracy high. In the cases
studied here, this value is 0.1 compression ratio.

Looking at the wall CPU time to perform simulations (Figure 5) we observe, as
expected, a decrease in CPU time with increasing compression. In terms of total
CPU time, the simulations that use the shortest time step require the most CPU
time. This is due to the fact that short time step needs many steps to reach steady
state, this the total CPU time is longer, while the CPU time per iteration (Figure 4)
depends solely on the compression ratio and is independent of the time step.

Examining the Ra = 106, Δt = 10−2 case, we observe that at highest
compression the CPU time is very long (Figure 5) and the simulation accuracy
is diminished (Figure 3). In this case the compression had an effect on the non-
linear solution procedure, raising the number of iterations needed and influencing
accuracy. This happens in the case of the longest time step. A long time step yields
small γ values in the domain (see equation (11)) and thus, according to Figure 1,
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Figure 5: Effect of compression on the CPU time per iteration.

very small integral kernel values are not reached. This results in diminishing
accuracy at high compression ratios.

4 Conclusions

We have examined the properties of fundamental solutions and their gradients for
unsteady and steady diffusion problems. We have shown, that the unsteady kernel
show greater promise for obtaining higher compression when making a sparse
approximation of the kernels. The reason for this is the fact, that the unsteady
kernels diminish quickly with the distance away from the source point. Thus,
compression is successfully, since a large portion of the domain may be neglected,
due to an almost negligible contribution to the kernel integral.

The theoretical findings have been confirmed by constructing wavelet transform
based sparse approximations in integral kernels in an existing flow and heat
transfer solver. We observed a major drop in computer resources needed for
simulation. As the problem simulated was non-linear, we have observed the

174  Boundary Elements and Other Mesh Reduction Methods XXXVII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press



increase in the non-linearity requires lower compression to achieve accurate
results.

In the future, we plan to integrate this technique into out in-house boundary
element method based laminar and turbulent viscous fluid and heat transfer solver.
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