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Abstract 

In a reversed field pinch device, the ordinary Cauchy-condition surface (CCS) 
method cannot reconstruct the magnetic flux profile accurately due to the strong 
eddy current flow on the shell (vacuum vessel). Boundary integrals of the eddy 
current density along the shell are added to the original CCS method formulation. 
The eddy current profile is unknown in advance but identified using only the 
signals of magnetic sensors located outside the plasma. As the sensors are closely 
adjacent to the shell, the near singular boundary integrals along the shell should 
be accurately evaluated. This singularity can be damped out with the algorithm 
based on the distance function proposed by Ma and Kamiya. The modified 
truncated singular value decomposition technique of Hansen et al. is an effective 
way to solve an ill-conditioned matrix equation when a large number of nodal 
points exist on the shell. The capability of the new method is demonstrated for a 
test problem modelling the RELAX device. 
Keywords: Cauchy-condition surface, eddy current, magnetic sensor signal, 
singular integral, modified truncated singular value decomposition technique. 

1 Introduction 

In a nuclear fusion device, the magnetic field or flux profile outside the plasma 
and hence the plasma boundary shape are highly important for operating control 
and diagnosis. Such information should be deduced from signals of magnetic 
sensors located outside the plasma, since the direct measurement of physical 
quantities inside the plasma is usually difficult. The Cauchy condition surface 
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(CCS) method [1, 2] is one such idea for reconstructing the flux distributions 
around the plasma boundary. The method has already been established for 
operating control of JT-60U, a tokamak-type device. In the method, however, the 
eddy current generated on the vacuum vessel was neglected. In a reverse field 
pinch (RFP) device such as the RELAX [3] at Kyoto Institute of Technology, a 
strong eddy current is generated on the shell (vacuum vessel) wall, which is closely 
related to the local magneto-hydrodynamic (MHD) equilibrium.  
     In the present paper the authors propose an advanced CCS method where the 
eddy current term is given by a boundary integral along the shell in the poloidal 
direction. The eddy current profile is not given in advance but completely 
unknown before one starts the analysis. One solves the Cauchy conditions and the 
eddy current profile simultaneously. The authors introduce two ideas to overcome 
the numerical difficulties encountered in this inverse problem. One is an accurate 
boundary integral scheme to damp out the near singularity occurring at the sensor 
position very close to the shell. The other is the modified truncated singular value 
decomposition (MTSVD) technique to solve an ill-conditioned matrix equation 
when a large number of nodal points exist on the shell. 

2 Problem specifications 

One here considers a problem to model a limiter configuration of the RELAX 
device [3], as an example of a reversed field pinch device. The shell (vacuum 
vessel) is regarded as axisymmetric in the toroidal direction and its cross section 
is a circle with radius 0.25m, which is centred at (r, z) = (0.51m, 0.51m) as shown 
in Figure 1. One assumes that a ‘limiter’ having a length of 1cm is located at the 
position (r, z) = (0.75m, 0.51m) on the inner wall of the shell. The reference 
distributions of magnetic flux inside the shell and the eddy current on the shell 
were analysed beforehand using the RELAX-Fit code [4].  

 

  

Figure 1: Image of the RELAX limiter configuration. 
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     The signals of magnetic sensors were also known before the present inverse 
analyses. The sensor locations are also illustrated in Figure 1. One assumes 40 
sensor positions around two circles with a common centre at (r, z) = (0.51m, 
0.51m) inside the shell: 20 points are around the circle with a radius of 0.242m at 
even intervals, while the other 20 are at a distance of 0.248m from the centre. Each 
position is 8mm and 2mm away from the shell, respectively. One here 
hypothetically assumes that both a toroidal flux loop and a tangential probe are 
located at each of the 40 positions. That is, a total of 80 magnetic sensors  
are assumed. The tangential probe detects the magnetic field component that is 
tangential to the shell surface in the poloidal direction. 

3 Method 

In this section, one describes how the effect of the eddy current on the shell is 
incorporated into the original CCS method. The eddy current distribution on the 
shell, in the same way as all other physical quantities, is assumed to be 
axisymmetric in the toroidal direction. 

3.1 The set of boundary integral equations 

The Cauchy-condition surface (CCS), where both the Dirichlet and the Neumann 
conditions (i.e. the magnetic flux function   and its normal derivative / n  ) 

are unknown, is hypothetically placed in a domain that can be supposed to be 
inside the plasma. In the analysis, no plasma current is assumed outside this CCS, 
where in reality plasma current does exist. Instead, the CCS plays the same role as 
the plasma current in causing the field outside the plasma. 
     For an axisymmetric (r, z) system, the differential form of Ampere’s law 

0  j B  can be reduced to a partial differential equation  

 
2

*
0 Pl Coil Eddy2

1
( )r r j j j

r r r z
  

                
               (1) 

 
in terms of magnetic flux function ．Here, Plj  , Coilj  , and Eddyj   denote the 

toroidal components of the plasma current, the external coil current and the eddy 
current respectively. The quantity 0   is the permeability of a vacuum. In the 

following formulation one uses the magnetic flux 2    [Wb] instead of  

the magnetic flux function    [Wb/rad] because the physical quantity directly 

measured is the magnetic flux. Also, instead of the magnetic field signal B , a 
quantity 2B B  is defined. 
     To evaluate   and / n   at six points along the CCS ( CCS ), three types of 

boundary integral equations (BIEs) can be given using the sensor signals and the 
external poloidal coil current data, as shown in the following. 
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(i) For the magnetic ‘flux’ signal i  at points i : 

 

CCS Shell

* *
*

02 ( ) ( ) ( )i i S s s i sW d j d
r n r n

      
 

  
         

  r r r r
  .  (2a) 

 
(ii) For the magnetic ‘field’ signal iB  at points i : 
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*
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i i S s s i s

B B
B W d j B d

r n r n

  
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using the quantity 2i iB B , where /i i iB r  0n , * * /B r  0n  with 

0n  being the assigned vector normal to the direction of the ‘magnetic probe’ 

located at the point i . 

(iii) For points i  on the CCS: 
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*
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2 ( ) ( ) ( )
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  . (2c) 

 

     In eqns (2a)–(2c), iW , B
iW  and C

iW  are the contributions of the external coil 

currents to the point i . In each equation, * denotes the fundamental solution 

which satisfies a subsidiary equation 
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,                                (3) 

 
where Dirac’s delta function i  means ( ) ( )r a z b   with the spike at the point

i , where i  is defined as having the coordinates (a, b). The detailed form of *  is 

given by [1, 2] 
 

                      
2

* 1
2

ar k
K k E k

k



  

    
  

                             (4) 
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where ( )K k  and ( )E k  are the complete elliptic integrals of the first and the 

second kind, respectively. 
     The second term on the RHS in each of eqns (2a), (2b) and (2c) describes the 
effect of the eddy current on the shell. In the quantity * ( )s i r r , sr  means an 

arbitrary point on the shell. The quantity ( )S sj r  denotes the linear density 

[MA/m] distribution of the eddy current on the shell, which is integrated in the 
poloidal direction along the shell ( Shell ). 

3.2 Accurate computation of boundary integrals along the shell 

The boundary integrals along the shell (the second term on the RHS in each of 
eqns (2a), (2b) and (2c)) should be performed very carefully. Since the distance 

2 2( ) ( )r a z b      between the sensor position (a, b) and an integration 

point ( , )r z  on the shell is very short, the following singularities [5] 

 

* log
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a 
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  ,                                                    (6) 
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                                     (7) 

 
and 

*
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( ) 1

2
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
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 


,                                               (8) 

 
arise in the integration kernels when 0  . 
     In a boundary element ( Shell, j ) along the shell, one here uses the notations 

( )G   and ( )   for the Jacobian of the coordinate transformation and one of the 

interpolation functions, respectively. Suppose that * ( )B   is the fundamental 

solution or its derivative, while ( )SF   denotes the corresponding asymptotic 

function, i.e. eqns (6), (7) or (8). The general form of the boundary integral over 

Shell, j  can be rearranged as 

 

 
1 1 1

* *
0 0 0 0

1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )S SG B d G B G F d G F d              
  

     ,  (9) 

 
where 0G  and 0  are the values of ( )G   and ( )   at the position 0   on the 

boundary element that is the nearest to the location of the magnetic sensor i  under 
consideration. The asymptotic function is subtracted from the original integrand 
in the first integral on the RHS of eqn (9), and this subtraction is compensated by 
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the analytical integral of the second integral on the RHS. The total integrand of 
the first integral has no singularity and can therefore be evaluated with the ordinary 
Gaussian quadrature with 16 integration points for each boundary element. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The minimum distance 0d  from the sensor position (a, b) to a 
boundary element. 

     Ma and Kamiya [6] proposed the use of an approximated ‘distance function’ 
for the boundary element adjacent to the sensor position (a, b) as 
 

2 2
0 0 0 0( ) ( ) ( / )d G d G     ,                              (10) 

 
where 0d  is the minimum distance from the point (a, b) to the boundary element 

as shown in Figure 2, which corresponds to the local coordinate 0  . Equation 

(10) agrees with   in eqns (6), (7) and (8) when 0   and 0 0d  . 

     The quantities in eqns (7) and (8) can be rewritten in the following forms: 
 

1 0 2
02 2 2 2 2 2

0 0 0 0 0 0 0

( )( ) 1

2 2 ( ) ( / ) ( ) ( / )

a r a a

G d G d G

   


      
 

        
 (11) 

 
and 
 

1 0 2
02 2 2 2 2 2

0 0 0 0 0 0 0

( )( ) 1

2 2 ( ) ( / ) ( ) ( / )

a z b a

G d G d G

   


      
 

        
.  (12) 

 
     The terms having singularities can be integrated analytically, e.g. 
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Figure 3: Integrands before and after damping out the singularity. 

3.3 Discretization 

Using the quadratic boundary elements, eqns (2a), (2b) and (2c) are discretized, 
coupled and can be expressed in a matrix form 
 

Dp g ,                                                    (14) 

 
where D  is an m n  matrix. The solution vector p  contains SN  nodes of linear 

D eddy current density on the shell as well as the set of CN  flux values and their 

CN  normal derivatives on the CCS. Then, the total number of unknowns is

2 C Sn N N  , while the number of BIEs is given by B Cm N N N    with N  

and BN  being the numbers of flux loops and field sensors, respectively. The 

quantities ii W   and B

ii WB   are stored in the vector g  in eqn (14). 
     The matrix equation (14) is solved using the singular value decomposition 
(SVD) technique [7]. The matrix D  is decomposed as TD UΛV , where U  and 

TV  are orthogonal matrices and Λ  is a diagonal matrix with positive singular 
values or zero components. In the so-called truncated SVD (TSVD) technique [7], 
the regularized solution is given by 
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     Figure 3 compares the integrands in terms of * / b   with an interpolation 

function 2 (1 )(1 )      before and after damping out the singularity for a case 

where 10 boundary elements are used along the shell. The strong singularity is 
efficiently damped out. As the modified integrand in Figure 3(b) still has a small 
edge at 0 0.5  , the first integral on the RHS of eqn (9) is divided into two integral 

intervals, 0[ 1, ] and 0[ , 1]   as long as 0 1   . 



1 T

k k

p VΛ U g .                                                (15) 

 
Here kΛ  means that the singular values smaller than k  in Λ  are omitted so that 

the condition number is not larger than a certain value.  
     Once all the values of the Cauchy conditions on the CCS and the linear eddy 
current densities on the shell nodes are known, the magnetic flux i  for arbitrary 

points outside the CCS can be calculated using eqn (2a). 

3.4 Solving an ill-conditioned matrix equation – the MTSVD method 

Figure 4 shows the behaviour of the singular values which appeared in the SVD 
process for various numbers of assumed eddy current nodes, SN . The vertical axis 

represents the singular values whose maximum value is normalized to unity. The 
smallest singular value becomes less than 310  when SN  is greater than 40. 

 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

Figure 4: The singular values with the number of eddy current nodes. 

     A gap is commonly observed in the vicinity of 310  of the normalized singular 
values. When the number of current nodes SN  exceeds 40, the condition number 

(the ratio of the largest to the smallest singular values; the reciprocal of the 
normalized singular value) jumps up to over 410 . If one truncates the singular 
values smaller than the gap threshold observed in Figure 4, the improved condition 
numbers are around 26 10  in all cases. 
     Even with this TSVD technique, however, a numerical oscillation of kp  is 

observed when the smallest singular value is smaller than the gap threshold. One 
idea to suppress such an oscillation is to introduce a constraint, min Lp , in 
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addition to min Dp g , where L  means a differential operator. Based on this 

idea, Hansen et al. [8] derived the modified TSVD (MTSVD) solution 
 

, ( )L k k k k k k k k
   p p V LV Lp p V z ,                          (16) 

 
where 1[ , , ]k k nV VV   and kz  is the solution of 

 
( )k k kLV z Lp .                                          (17) 

 
One uses the following ( 6)n n   matrix for a total of n  unknowns: 
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 
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.                                         (18) 

 
In eqn (18), (N)L , (D)L  and (E)L  are discrete approximations to the second 
derivative operator applied to the Neumann conditions on the CCS, the Dirichlet 
conditions on the CCS and the current density solution on the shell surface, 
respectively, each of which has the tridiagonal form 
 

(E)

1 2 1

1 2 1

1 2 1

 
  
 
 

 

L
  

.                                   (19) 

 
to obtain a smooth solution. 
     Figure 5 illustrates the effectiveness of the MTSVD method when applied to a 
test case where 60 eddy current nodes are assumed. The solid grey curve that 
oscillates at high frequency is the original solution ( kp ) that is produced using the 
ordinary TSVD technique. The number of peaks in this curve, 60, agrees with  
the number of assumed eddy current nodes. The dotted curve depicts the correction 
vector that is given by k kV z  in eqn (16). Subtracting the dotted curve from the 
grey curve, i.e. following eqn (16), one obtains the solid black curve ( ,L kp ) where 
the numerical oscillation has been drastically damped out. Although there are 
slight ripples in the resultant curve, it is worth mentioning that the number of 
ripples agrees not with the number of current nodes any more but with the number 
of sensor locations (= 40), which are the singular points, i , indicated in eqns (2a) 
and (2b). 
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Figure 5: Subtraction of correction vector from the original solution. 

4 Numerical demonstration for the RELAX device 

In the present work the CCS approximates a circle having a radius of 0.125m  and 
centre (r, z) = (0.51m, 0.51m), as also shown in Figure 1. The circle is divided into 
3 continuous quadratic boundary elements, so that the total number of nodes is 6 
(the number of unknowns on the CCS becomes 12). 

4.1 Reconstructed profiles of eddy current density and magnetic flux  

Figures 6(a)–(d) show the variation in the eddy current density on the shell surface 
for the cases assuming 20, 30, 40 and 60 eddy current nodes, respectively. In each 
figure the vertical axis denotes the current density, while the abscissa means the 
poloidal angle   that varies in the clockwise direction whose starting point 
( 0  ) on the shell is at the top (r, z) = (0.51m, 0.76m). The dashed and the solid 
curves in Figure 6 denote the reference and the reconstructed variation in the eddy 
current density, respectively.  
     Note here that the MTSVD technique is applied in cases where one truncates 
the singular values smaller than the gap threshold shown in Figure 4, i.e. the cases 
where the number of current nodes is greater than 40. That is, Figure 6(d) is the 
result when using the MTSVD technique. 
     Figures 7(a) and 7(b) show the reconstructed flux profiles for the 40 and 60 
current node cases. In each figure the dashed contours show the reference solution, 
while the solid contours indicate the reconstructed flux. In an ordinary CCS 
method analysis, the reconstructed flux solution is inaccurate in the domain where 
the plasma current exists. However, in the present RELAX analyses, accurate 
reconstructions can be observed even deep inside the plasma region. This is 
because the eddy current effect is dominant over the plasma current effect for the 
formation of the flux distribution in the RELAX device. 
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Figure 6: Reconstruction of the eddy current profile. 

 

 

 

 

 

 

 

 

 
  

Figure 7: Reconstruction of the magnetic flux profile. 
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4.2 Influence of the sensor signal noise 

The effect of measurement errors on the reconstruction was also studied. Noise 
was numerically generated and added to all field and flux loop signals. A  
noise-added signal is given by (1 )j jb b G   , where jb  is the original signal, 
G denotes a unit Gaussian random number, and   is the standard deviation of the 
Gaussian noise.  
     Without sensor signal noise, the reconstructed current density profile shown in 
Figure 6(a) under the adoption of 20 current nodes seems to be in good agreement 
with the reference profile. However, it is premature to make a conclusion that the 
best choice is this number of current nodes. Figure 8 shows the relative errors of 
reconstructed flux and eddy current density as functions of the number of current 
nodes under the assumption of 3%   noise. Unfortunately the solutions are 
sensitive to the signal noise if the number of current nodes is less than 40. 
     In Figure 8, the dashed curve indicates the variation in the condition number 
multiplied by 3%, which is the theoretical maximum of the error caused by the 3% 
  noise. (The condition numbers with over 40 current nodes mean the results 
after truncating the small singular values.) It should be noticed that, in spite of the 
comparatively small condition numbers, the observed errors with fewer than 40 
nodes are much larger than those with over 40 nodes. Accordingly, this 
phenomenon cannot be explained by the magnitude of the condition number. 
Rather, it is suggested that this is caused by the lack of information as a constraint 
in the inverse analysis. One should adopt a number of current nodes which is large 
enough to ensure that all singular values larger than the gap threshold, which have 
meaningful physical information, are taken into account in the analysis for 
obtaining a robust solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 8: Influence of the sensor signal noise when 3% σ noise is imposed. 
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5 Conclusion 

(1) As the sensors are closely adjacent to the shell, the near singular boundary 
integrals along the shell should be accurately evaluated. This singularity is 
damped out effectively with the algorithm based on the approximated 
distance function. 

(2) If the smallest singular value is smaller than the gap threshold, a numerical 
oscillation of the eddy current profile is observed. This oscillation is 
eliminated effectively by applying the MTSVD technique. 

(3) To obtain a solution stable against sensor signal noise, one should adopt 
enough number of eddy current nodes to ensure that all singular values larger 
than the gap threshold are taken into account. 

     The present techniques are applicable to the problem of eddy current flow in a 
conductor located close to a magnetic sensor in many other devices. 
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