
A voxel-based electrostatic field analysis for
the virtual-human model Duke using the
indirect boundary element method with
a GPU-accelerated fast multipole method

S. Hamada
Department of Electrical Engineering, Kyoto University, Japan

Abstract

The voxel-based indirect boundary element method (IBEM) using the
Laplace-kernel fast multipole method (FMM) is capable of analysing relatively
large-scale problems. Furthermore, the voxel-based IBEM is suitable for
acceleration using graphics processing units (GPUs). A typical application of the
IBEM is the analysis of electrostatic fields for virtual-human anatomical voxel
models such as the model called Duke provided by the IT’IS Foundation. An
important property of voxel-version Duke models is that they have different voxel
sizes but the same structural feature. This property is useful for examining the
O(N) and O(D2) dependencies of the calculation times and the amount of memory
required by the FMM-IBEM, where N and D are the number of boundary elements
and the reciprocal of the voxel side length, respectively. In this study, the O(N)
and O(D2) dependencies of the voxel-based GPU-accelerated FMM-IBEM were
confirmed by analysing Duke models with voxel side lengths of 5.0, 2.0, 1.0, and
0.5 mm. The finest model comprised 2.2 billion voxels with 61 million square
boundary elements, and a linear equation solver on a personal computer with four
GPUs required 1,276 s to obtain a solution. In addition, a technique is proposed to
improve the convergence performance of the linear equation solver by considering
the non-uniqueness of the electric potential, and its effectiveness is demonstrated.
Keywords: voxel-based analysis, electrostatic field, indirect boundary element
method, virtual-human model, fast multipole method, graphics processing unit,
non-uniqueness of solutions.

Boundary Elements and Other Mesh Reduction Methods XXXVII 135

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

doi:10.2495/BE370121

1 Introduction

Various types of electromagnetic field analyses based on voxel models have been
employed widely with the finite difference method, finite element method, etc.
(e.g. Dawson et al. [1, 2], Hatada et al. [3]). The main advantages of voxel-based
analysis include the facile production of realistic models from three-dimensional
image data and the simple data structure, which is suitable for storage, handling,
and visualisation. These advantages facilitate the analysis of relatively large-scale
realistic models, particularly anatomical human models produced from magnetic
resonance images.
 Voxel-based boundary element methods (BEMs) for analysing relatively
small-scale problems have been reported frequently. However, a voxel-based
indirect BEM (IBEM) was applied to relatively large-scale problems by Hamada
and Kobayashi [4] using the Laplace-kernel fast multipole method (FMM)
(Greengard and Rokhlin [5]). Furthermore, this IBEM was accelerated using
graphics processing units (GPUs) (Hamada [6, 7]) with NVIDIA’s compute
unified device architecture (CUDA) (NVIDIA [8]), thereby obtaining high-
performance computation, even with a personal computer. This IBEM was used
to analyse the electrostatic fields in human voxel models that describe the
conductivities of biological tissues.
 The IT’IS Foundation provides an adult male model called Duke (Christ et al.
[9]), which was originally a surface-based model, but voxel-version models are
available for voxel-based analyses. An important property of voxel-version Duke
models is that they have different voxel sizes but the same structural feature. This
property is useful for examining the O(N) and O(D2) dependencies of the
calculation times and the amount of memory required by the FMM-IBEM, where
N and D are the number of boundary elements and the reciprocal of the voxel-side
length, respectively. Note that the O(D2) dependency appears when the full size of
the model under analysis is fixed.
 In this study, the O(N) and O(D2) dependencies of the voxel-based GPU-
accelerated FMM-IBEM were confirmed by measuring the calculation times and
the amount of memory required to analyse Duke models with voxel-side lengths
of 5.0, 2.0, 1.0, and 0.5 mm. A technique is also proposed for improving the
convergence performance of the linear equation solver for the IBEM, and its
effectiveness is demonstrated. The proposed technique considers both the
non-uniqueness of the electric potential and the existence of isolated voxel clusters.

2 Voxel-based indirect BEM with GPU-accelerated FMM

2.1 Magnetically induced electrostatic field analysis for biological samples

The basic equations of magnetically induced low-frequency faint currents in
biological tissue were reported previously, e.g. by Dawson et al. [1], where it is
assumed that the displacement current and secondary magnetic field are negligibly
small. After applying an external magnetic flux density B0 and a vector potential

136 Boundary Elements and Other Mesh Reduction Methods XXXVII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

0A which satisfy B0 =  A0, the induced electrostatic field E, the current density

J , and the scalar potential  satisfy the following equations:

   0j AE , EJ  , 02   , (1)

where j,  , and  are the imaginary unit, angular frequency, and conductivity,
respectively. The electric fields on both sides of a boundary surface with a unit
normal vector n satisfy the following boundary equation:

nEnE    . (2)

The subscripts  indicate the plus or minus side of the boundary with respect to
n . An indirect BEM is used to analyse the Laplace equation in eqn (1) by solving
the simultaneous linear equations expressed in eqn (2).

2.2 Voxel-based IBEM

The voxel-based IBEM starts by converting a cubic-voxel model into an
equivalent boundary element model by considering a square boundary sandwiched
between two voxels with different conductivities as a square boundary element.
The N pieces of the boundary elements are assumed to have uniform surface

charge densities ix (i = 1 to N), which numerically simulate  in eqn (1). The

surface integral of nE  on the jth element is as follows:

  


 

















N

jii
j

j

S S
ij

iji

SS
S

x
SS

x
SS

j ijj ,1 0
3

0

0
2

dd
4

djd
)(


 n

rr

rr
nAnE , (3)

where ir is the position vector on the ith element. Each boundary equation is

formulated as a surface integral of eqn (2) on each square boundary element:

 SS
jj SS

dd    nEnE  . (4)

The simultaneous linear equations bx C are composed of eqn (4) into which
eqn (3) is substituted, where C is an NN  coefficient matrix, x is an 1N
unknown vector, and b is an 1N constant vector. The surface charge densities
x are determined by numerically solving bx C . The fields of E and J are

calculated for all the voxel centres on the basis of the value of x determined using
an integral equation which is similar to eqn (3) in the post-processing stage.

Boundary Elements and Other Mesh Reduction Methods XXXVII 137

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

2.3 Technique for obtaining a unique solution without numerical deviations

Eqn (4) corresponds to the Neumann boundary condition; thus, the unknown
charge densities x have non-uniqueness due to the non-uniqueness of the electric
potential. Some techniques are required to obtain a unique solution. First, the ith
rows of C and b are divided by the diagonal component cii of C to scale cii unity.
Second, Cx = b is separated into two parts, i.e. an arbitrary kth row and the other
rows. The kth row can be regenerated by the others with elementary row operations
because of the linear dependence due to the non-uniqueness. Third, the kth row is
replaced by the following equation, which states that the total polarisation charge
is physically zero:

0)11(x , (5)

where (1…1) is a 1 N constant vector. The simultaneous equations obtained yield
a unique mathematical solution (Hamada and Kobayashi [4]). However, the
numerical solution of the kth unknown, xk, tends to exhibit a measurable deviation
because of the diagonally non-dominant nature of eqn (5). Fourth, we transform
the simultaneous equations continuously into the following form: Cc + βUx/N =
b, where β is an arbitrary scalar constant which is set to be approximately one, and
U is an N  constant matrix, where all entries are one. Every row of βUx/N
represents β times the average of x. Finally, by rescaling the diagonal components
to unity, the following simultaneous equations are obtained:

 bxx




 





 N

N
U

N
C

N

N . (6)

 Eqn (6) provides a unique numerical solution without the deviation of xk, and
it can be implemented easily in iterative solvers for simultaneous linear systems.
However, a voxel model sometimes comprises a number of clusters of voxels
which are isolated by the air region, which has a conductivity of zero. In these
cases, eqn (6) is modified on the basis of the fact that the total charge in each
isolated cluster is zero. If two clusters consisting of N1 and N2 surface elements are
considered, eqn (6) is modified to the following form:




















































































2

2
2

1

1
1

2
22

1
11

2

2
22

2

2
21

1

1
12

1

1
11

0

0

N

N
N

N

N
U

N
U

N

N
C

N

N
C

N

N
C

N

N
C

b

b

xx , (7)

where the sizes of Cij and bi are Ni Nj and Ni 1, respectively. Note that if only
closed-region problems are analysed, the field in each cluster can also be solved
with eqn (6) simply by considering the voxels in the cluster. However, eqn (7) is
available without any such restriction.

138 Boundary Elements and Other Mesh Reduction Methods XXXVII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

2.4 Voxel-based IBEM with GPU-accelerated FMM

The FMM (Greengard and Rokhlin [5]) is one of the best-known algorithms used
to accelerate iterative solvers for simultaneous linear equations during BEM
analysis. The Laplace-kernel FMM calculates the Coulombic interactions among
the elements by separating the calculation process into two parts: (i) the direct
interaction calculation of nearby elements and (ii) the non-straightforward
interaction calculation with multipole- and local-expansion coefficients, which are
referred to as the ‘near-part’ and ‘far-part’ calculations, respectively, in the present
study. The translation algorithm used to convert the multipole-expansion
coefficients into local-expansion coefficients in this study was a diagonal-form
translation algorithm (Greengard and Rokhlin [5]). It is easy to apply FMM to the
voxel-based BEM by considering a cubic-shaped cluster of voxels, e.g. 6 × 6 × 6
= 63 cubic voxels, as a leaf cell defined in the FMM algorithm.
 The GPU-accelerated FMM algorithm has been employed in many previous
studies (e.g. Gumerov and Duraiswami [10] and Yokota et al. [11]). Details of
GPU acceleration for the voxel-based FMM-IBEM were reported by Hamada
[6, 7]. The basic points used to estimate the performance of the GPU-accelerated
FMM with CUDA (NVIDIA [8]) are summarised as follows.
 The GPU operations are classified into the following three categories: (i) using
the GPU register and GPU shared memory, (ii) using the memories in (i) plus
the GPU device memory, and (iii) using the memories in (ii) plus the CPU
memory. The times required for these operations satisfy the following
relationship: (i) << (ii) << (iii).
 In the present study, CUDA kernels execute the following processes, almost in
series: (a) transferring source data from the device memory to the register or shared
memory using operation (ii), (b) collecting source data and producing target data
with operation (i), and (c) transferring target data from the register or shared
memory to the device memory using operation (ii).
 The data for the elements and expansion coefficients are accessed via the cell
number. Thus, the times required for processes (a), (b), and (c) are affected by the
number of cells (or leaf cells) and by the amount of data in a cell, which vary
according to the parameter settings. The time required for (b) is affected by the
number of numerical operations, which depends on the contents of the collection
and production processes, and the performance of the multiprocessor.

2.5 Complexity of a voxel-based IBEM with a GPU-accelerated FMM

The number of numerical operations and the amount of memory required by the
Laplace-kernel FMM-IBEM are expected to have O(N) dependencies. During
voxel-based analyses, N roughly exhibits an O(D2) dependency, where D is the
reciprocal of the voxel side length when the full size of the model being analysed
is fixed. The O(D2) dependency of the boundary elements contrasts with the O(D3)
dependency of the number of volume elements, e.g. voxels. The CPU calculation
time is almost proportional to the number of numerical operations. The GPU
calculation time is roughly proportional to the number of numerical operations
because it is affected by the time required for operations (i) and (ii).

Boundary Elements and Other Mesh Reduction Methods XXXVII 139

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

3 Virtual-human model Duke

The IT’IS Foundation (www.itis.ethz.ch/vip) provides a series of anatomical
virtual human models including an adult male model called Duke (Christ et al. [9])
which measures 1.77 m in height and consists of 77 tissue types. It was originally
defined as a surface model, and we are contractually permitted to use its
derivational voxel-version models in general program codes. Ready-made voxel-
version models are provided in a distribution DVD with voxel-side lengths of 5.0,
2.0, 1.0, and 0.5 mm. The specifications of the models are summarised in Table 1.
The number of voxels shows an O(D3) dependency and the maximum number of
total voxels exceeds 2 billion. The number of boundary elements, N, roughly
exhibits an O(D2) dependency, which is approximately O(D2.1), and the maximum
value of N reaches 61 million. The number of fragment clusters fluctuates from
zero to nine. The isotropic tissue conductivities are set mainly by referring to
Hirata et al. [12]. Figure 1 shows the tissue numbers and calculated values of |E
for models with 5.0 and 0.5 mm voxel side lengths. In the present study, four
voxel-version Duke models were used as a series of models with the same
structural feature to examine the O(N) and O(D2) dependencies of the calculation
time and the amount of memory required by the voxel-based FMM-IBEM.

 (a) 5 mm, (b) 5 mm, (c) 5 mm, (d) 0.5 mm, (e) 0.5 mm, (f) 0.5 mm,
 tissue no. log|E|. log|E|. tissue no. log|E|. log|E|.

Figure 1: Tissue number and calculated values of |E| in the Duke models.

140 Boundary Elements and Other Mesh Reduction Methods XXXVII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

|

Table 1: The numbers of voxels, boundary elements and isolated clusters.

Voxel-side length 5.0 mm 2.0 mm 1.0 mm 0.5 mm
Voxels in the x direction 112 272 544 1084
Voxels in the y direction 58 143 285 566
Voxels in the z direction 362 904 1806 3610
Total voxels 2,351,552 35,161,984 280,002,240 2,214,893,840
Tissue voxels 548,164 8,567,668 68,549,358 548,386,439
Boundary elements, N 472,284 3,617,128 15,070,962 61,492,477
Clusters: main + fragments 1 + 3 1 + 0 1 + 1 1 + 9

4 Computing environment and settings used for calculations

A personal computer running 64-bit Microsoft Windows 7 was used to perform
the calculations. The computer had an Intel Core i7-4960X CPU (six CPU cores,
3.6 GHz), 64 GiB of RAM, and four NVIDIA GTX TITAN GPUs, where a GPU
has 6 GiB of GDDR5 device memory, 14 multiprocessors (2,688 CUDA cores),
and 48 kiB of shared memory per multiprocessor. Each GPU was used in the DP
mode on a PCI Express 3.0 bus. The developed programs were compiled by the
CUDA 5.5 NVCC compiler and Intel Visual FORTRAN Composer XE 2013 in
Microsoft Visual Studio 2012. The number of OpenMP threads was set up to 12.
The applied 50-Hz AC homogeneous magnetic field B0 = B0k had strength of
1 µT. The vector potential was defined as A0 = 0.5B0 (-yi + xj), where i, j, and k
are the unit vectors parallel to the x, y, and z axes, respectively.
 The order of the multipole and local expansions was set to 10 in the FMM
algorithm. The diagonal-form translation algorithm (Greengard and Rokhlin [5])
was adopted. The voxel-cluster sizes used to define the leaf-cell size were 53, 63,
73, 83, or 93. Bi_IDR(s) (Onoue et al. [13]) was used as the iterative solver with s
= 3. This solver requires one matrix–vector-product calculation per iteration step.
In eqns (6) and (7), β = 1. Convergence occurred when the relative residual
Euclidean norm was less than 10-6, but this criterion value was set to 10-12 in
subsection 5.1.

5 Results

5.1 Improving the convergence performance of the linear equation solver

The convergence performance of the linear equation solver was investigated to
confirm the validity of eqns (6) and (7). The voxel side length, the number of
fragment clusters, and the leaf-cell size were 5.0 mm, 3, and 73 voxels, respectively.
Figures 2 (a), 2 (b), and 2 (c) show the results obtained using no measures, eqn (6),
and eqn (7), respectively. The horizontal axis shows the number of iteration steps.

The vertical axis shows the relative residual norm and the sum of ix (1
N

ii x)

over the standard deviation of ix , which is an index of the deviation of the total

charges from zero. In the first case in Figure 2 (a), the index of deviation increased
rapidly around the 140th step and remained almost constant at approximately

Boundary Elements and Other Mesh Reduction Methods XXXVII 141

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

10-1. The relative residual decreased gradually with several stagnant periods. The
increase in the index tended to decelerate the convergence as well as degrade the
quality of the solution. Finally, the calculation was terminated at the 496th step
owing to an execution error. In the second case in Figure 2 (b), the relative residual
stagnated at approximately 10-8, although the index of deviation remained at small
values of approximately 2 10-8. This stagnation was due to the lack of constraints
on the zero total charge in an individual cluster. Finally, the calculation was
terminated at the 490th step. In the third case in Figure 2 (c), the relative residual
decreased almost uniformly to less than 10-12, and the index of deviation remained
at small values of approximately 2 10-8. These results demonstrated that eqn (7)
is effective in improving the convergence performance when a number of isolated
voxel clusters exist. This implies that the use of eqn (7) ensures the quality of the
solution even with a relatively high value for the convergence criterion.

Figure 2: Convergence performance with eqns (6) and (7).

5.2 Calculation times with CPU code

The CPU calculation times required by the linear equation solver to analyse the
four Duke models were measured, as shown in Figure 3. Table 2 lists the
calculation times and iteration steps required when the fastest one-step time or the
fastest total time was observed for each model, which are highlighted in boldface
type. The number of iteration steps required was almost constant and ranged from
95 to 118. Figures 3 (a) and 3 (b) show the dependencies of the one-step
calculation time on N and D, respectively. Figure 3 (a) shows the least-squares line
of the fastest data for each N. The slope shows that the dependency is O(N0.954). In
a similar manner, Figure 3 (b) shows that the dependency is O(D2.017). In addition,
the dependencies of the near- and far-part calculation times are O(N0.970) and
O(N0.935), respectively, based on the fastest parameter settings in Figure 3. This
confirms that the voxel-based IBEM approximately exhibits O(N) and O(D2)
dependencies on the CPU calculation time, as expected.

0 200 400

10−10

100

0 200 400 0 200 400

(a) Without eqns (6), (7). (b) With eqn (6). (c) With eqn (7).

: Relative residual
: SUM(xi)/SD(xi)

Step Step Step

R
e

la
tiv

e
 r

e
si

d
u

a
l a

n
d

S

U
M

(x
 i)

/S
D

(x
 i)

142 Boundary Elements and Other Mesh Reduction Methods XXXVII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

(a) One-step time versus N. (b) One-step time versus D.

Figure 3: Dependencies of the one-step CPU calculation time on N and D.

Table 2: Calculation times with CPU code.

Voxel-side
length

Voxels in
a leaf

Time for one
step / s

Time for
near-part / s

Time for far-
part / s

Iteration
steps

Total time for
solver / s

5.0 mm 53 0.6546 0.3518 0.2945 103 67.42
2.0 mm 53 4.454 2.126 2.266 105 467.6
2.0 mm 63 4.614 3.060 1.496 99 456.8
1.0 mm 63 17.34 9.465 7.627 110 1,906.9
0.5 mm 73 68.52 38.80 28.78 118 8,084.7
0.5 mm 83 74.53 51.45 22.17 95 7,080.0

5.3 Calculation times with GPU code

The GPU calculation times required by the linear equation solver were measured,
as presented in Figure 4 and Tables 3 and 4. Figures 4 (a) and 4 (b) show that the
dependencies of the one-step calculation time on N and D are O(N1.019) and
O(D2.155), respectively. This confirms that the GPU-accelerated voxel-based
IBEM approximately exhibits O(N) and O(D2) dependencies. However, the
dependencies were degraded slightly compared with those using CPU code. Table
3 summarises the calculation times and speed-up ratios compared with the CPU
times. The dependencies of the near- and far-part calculation times are O(N1.114)
and O(N0.904), respectively, with the fastest settings shown in Figure 4.
 The far-part speed-up ratios in Table 3 were all low, ranging from 3.22 to 4.90.
This was because the number of far-part calculations (process (b) with operation
(i), see subsection 2.4) was of the same order as the number of device-memory
read/write (process (a) and (c) with operation (ii)) operations due to the diagonal-

105 106 107 10810
−1

10
0

101

102

O(N
0.

95
4)

: 6*6*6 voxels in a leaf
: 7*7*7 voxels in a leaf
: 8*8*8 voxels in a leaf
: 9*9*9 voxels in a leaf

: The fastest data

The number of surface elements (N)

C
P

U
 t

im
e

pe
r

st
ep

 /
 s

: 5*5*5 voxels in a leaf

10−2 10−1 100 10110
−1

10
0

101

102

O
(D

2.
01

7)

: 6*6*6 voxels in a leaf
: 7*7*7 voxels in a leaf
: 8*8*8 voxels in a leaf
: 9*9*9 voxels in a leaf
: The fastest data

The reciprocal of voxel side length, D

C
P

U
 t

im
e

pe
r

st
ep

 /
 s

: 5*5*5 voxels in a leaf

Boundary Elements and Other Mesh Reduction Methods XXXVII 143

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

form translation algorithm. Thus, the calculation speed was strongly restricted by
the latter. In contrast, the near-part speed-up ratios in Table 3 range widely from
6.45 to 28.6. This was because the number of near-part calculations (process (b)
with operation (i)) was much higher than the number of device-memory read/write
operations due to the repeated use of the shared memory data by the interaction
calculation. The number of near-part calculations depends strongly on the number
of elements in a leaf cell, which can be estimated roughly by N/L, where L is the
number of leaf cells in Table 4. Figure 5 shows the dependency of the near-part
speed-up ratios on N/L.
 The one-step time speed-up ratios were approximately 11 for the 5.0, 2.0, and
1.0 mm models, whereas it was 7.64 for the 0.5 mm model. Table 3 suggests that
a better speed-up ratio of approximately 11 might be obtained if a leaf cell is
defined by 103 voxels. However, this condition could not be executed because the
shared memory usage exceeded 48 kiB, which was inferred on the basis of the
shared memory usage in Table 4. On the basis of a practical definition of the speed-
up ratio as the fastest CPU time to the fastest GPU time for each model, the
one-step time speed-up ratios for the 5.0, 2.0, 1.0, and 0.5 mm models were
 8.28,  8.33,  7.07, and  6.09, respectively.
 Table 4 also lists the number of iteration steps required and the total calculation
time. The former was almost constant, as is the case for the CPU calculation. The
solver required 1,276 s for the finest model analysis.

(a) One-step time versus N. (b) One-step time versus D.

Figure 4: Dependencies of the one-step GPU calculation time on N and D.

105 106 107 108

10−1

100

101

O(N
1.

01
9)

: 6*6*6 voxels in a leaf
: 7*7*7 voxels in a leaf
: 8*8*8 voxels in a leaf
: 9*9*9 voxels in a leaf
: The fastest data

The number of surface elements (N)

G
P

U
 t

im
e

p
er

 s
te

p
/

s

: 5*5*5 voxels in a leaf

10−2 10−1 100 101

10−1

100

101

O
(D

2.
15

5)

: 6*6*6 voxels in a leaf
: 7*7*7 voxels in a leaf
: 8*8*8 voxels in a leaf
: 9*9*9 voxels in a leaf
: The fastest data

The reciprocal of voxel side length, D

G
P

U
 t

im
e

p
er

 s
te

p
/

s

: 5*5*5 voxels in a leaf

144 Boundary Elements and Other Mesh Reduction Methods XXXVII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

Table 3: Calculation times and speed-up ratios with the GPU code.

Voxel-side
length

Voxels
in a leaf

One step Near-part Far-part
Time / s Speed-up Time / s Speed-up Time / s Speed-up

5.0 mm 53 0.09418  6.95 0.01768  19.9 0.07004  4.21
63 0.08424  8.87 0.02768  19.6 0.05055  3.92
73 0.07906  11.9 0.03194  24.7 0.04080  3.49
83 0.09308  13.1 0.05359  20.5 0.03350  3.29
93 0.08791  18.1 0.05195  28.6 0.02968  3.22

2.0 mm 53 0.6842  6.51 0.1439  14.8 0.4906  4.62
63 0.5958  7.74 0.2125  14.4 0.3339  4.48
73 0.5346  10.5 0.2417  18.4 0.2434  4.57
83 0.6266  11.1 0.3877  15.5 0.1899  4.53
93 0.5358  16.6 0.3365  24.3 0.1492  4.56

1.0 mm 53 3.414  5.41 0.6103  11.3 2.555  4.43
63 2.898  5.98 0.9768  9.69 1.717  4.44
73 2.565  7.46 1.140  11.6 1.221  4.64
83 2.893  7.72 1.784  9.97 0.906  4.76
93 2.454  11.2 1.535  15.5 0.716  4.80

0.5 mm 63 13.70  5.01 4.156  6.87 8.723  4.48
73 11.84  5.68 4.867  7.97 6.162  4.67
83 13.43  5.55 7.977  6.45 4.637  4.57
93 11.25  7.64 6.791  9.89 3.643  4.90

Table 4: Calculation times and GPU memory usage with the GPU code.

Voxel-
side
length

Voxels
in a
leaf

Iteration
steps

Total
time for
solver / s

The
number of
leaves, L

Shared memory
for near-part
calculation / bytes

Device
memory per
card / 106 bytes

5.0 mm 53 103 9.701 6,378 7,210 55.5
63 97 8.171 3,985 12,936 44.5
73 99 7.827 2,680 21,134 39.1
83 112 10.43 1,891 32,248 41.0
93 98 8.615 1,435 46,722 44.9

2.0 mm 53 105 71.838 67,335 7,210 393.7
63 99 58.988 42,591 12,936 281.0
73 116 62.008 28,884 21,134 215.5
83 102 63.916 20,515 32,248 178.8
93 102 54.654 15,119 46,722 154.8

1.0 mm 53 104 355.02 379,477 7,210 1,843.3
63 109 315.85 243,518 12,936 1,298.9
73 107 274.44 167,226 21,134 960.6
83 104 300.88 119,952 32,248 760.0
93 109 267.48 89,468 46,722 617.2

0.5 mm 63 110 1,506.64 1,306,251 12,936 6,055.9
73 119 1,408.59 910,560 21,134 4,443.8
83 95 1,276.10 662,703 32,248 3,476.6
93 117 1,315.69 499,789 46,722 2,769.5

Boundary Elements and Other Mesh Reduction Methods XXXVII 145

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

Figure 5: Near-part speed-up vs.
N/L.

Figure 6: Device memory usage
vs. N.

5.4 Device memory usage with the GPU code

The GPU device memory usage per GPU card was measured and is presented in
Table 4 and Figure 6. The finest model analysis required approximately 3 GiB
with the fastest parameter settings. Figure 6 shows the least-squares line of the
data that required the least memory for each model. The data obtained from the 5-
mm voxel model were excluded from the least-squares because they included
measurable constant components, which would have made the slope gentler. The
slope exhibits an O(N1.018) dependency. This confirms that the IBEM
approximately exhibits an O(N) dependency on the device memory, as expected.

6 Summary

A voxel-based GPU-accelerated FMM-IBEM was used to analyse magnetically
induced electrostatic fields in a virtual-human model called Duke. An important
property of the voxel-version Duke models is that they have different voxel sizes
but the same structural feature. By exploiting this property, the O(N) and O(D2)
dependencies of the calculation times and the amount of device memory
required for the IBEM were confirmed successfully. The linear equation solver
required 1,276 s to analyse the finest model with 61 million boundary elements
and 2.2 billion voxels using a personal computer with four GPUs. In addition, a
technique was proposed to improve the convergence performance of the linear
equation solver for the IBEM, and its effectiveness was demonstrated successfully.
This research was supported by JSPS KAKENHI 25390153.

References

[1] Dawson, T.W., Caputa, K. & Stuchly, M.A., Influence of human model
resolution on computed currents induced in organs by 60-Hz magnetic fields.
Bioelectromagnetics, 18(7), pp. 478-490, 1997.

0 100 200 300
0

10

20

30
S

pe
ed
−

up
 r

at
io

 o
f

ne
ar

 p
ar

t

The number of elements / the number of Leaves

: 5*5*5 voxels in a leaf
: 6*6*6 voxels in a leaf
: 7*7*7 voxels in a leaf
: 8*8*8 voxels in a leaf
: 9*9*9 voxels in a leaf

105 106 107 108107

10
8

109

1010

O(N
1.

01
8)

: 6*6*6 voxels in a leaf
: 7*7*7 voxels in a leaf
: 8*8*8 voxels in a leaf
: 9*9*9 voxels in a leaf
: The least data

The number of surface elements (N)

G
P

U
 m

em
or

y
us

ag
e

pe
r

G
P

U
 b

o
ar

d
/

by
te : 5*5*5 voxels in a leaf

146 Boundary Elements and Other Mesh Reduction Methods XXXVII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

[2] Dawson, T.W., Caputa, K. & Stuchly, M.A., High-resolution organ
dosimetry for human exposure to low-frequency electric fields. IEEE
Transactions on Power Delivery, 13(2), pp. 366-373, 1998.

[3] Hatada, T., Sekino, M. & Ueno, S., Finite element method-based calculation
of the theoretical limit of sensitivity for detecting weak magnetic fields in
the human brain using magnetic-resonance imaging. Journal of Applied
Physics, 97, 2005.

[4] Hamada, S. & Kobayashi, T., Analysis of electric field induced by ELF
magnetic field utilizing fast-multipole surface-charge simulation method for
voxel data. Electrical Engineering in Japan, 165, pp. 1-10, 2008.

[5] Greengard, L. & Rokhlin, V., A new version of the fast multipole
method for the Laplace equation in three dimensions. Acta Numerica, 6,
pp. 229-269, 1997.

[6] Hamada, S., GPU-accelerated indirect boundary element method for voxel
model analyses with fast multipole method. Computer Physics
Communications, 182, pp. 1162-1168, 2011.

[7] Hamada, S., Performance comparison of three types of GPU-accelerated
indirect boundary element method for voxel model analysis. International
Journal of Numerical Modelling: Electronic Networks, Devices and Fields,
26, pp. 337-354, 2013.

[8] NVIDIA, http://www.nvidia.com/page/home.html
[9] Christ, A. et al., The virtual family – Development of surface-based

anatomical models of two adults and two children for dosimetric
simulations. Physics in Medicine and Biology, 55 (2), pp. N23-N38, 2010.

[10] Gumerov, N.A. & Duraiswami, R., Fast multipole method on graphics
processors, Journal of Computational Physics, 227, pp. 8290-8313, 2008.

[11] Yokota, R., Bardhan, J.P., Knepley, M.G., Barba, L.A. & Hamada, T.,
Biomolecular electrostatics using a fast multipole BEM on up to 512 GPUs
and a billion unknowns. Computer Physics Communications, 182(6),
pp. 1272-1283, 2011.

[12] Hirata, A. et al., Intercomparison of induced fields in Japanese male model
for ELF magnetic field exposures: effect of different computational
methods and codes. Radiation Protection Dosimetry, 138(3), pp. 237-244,
2010.

[13] Onoue, Y., Fujino, S. & Nakashima, N., An overview of a family of new
iterative methods based on IDR theorem and its estimation. Proc. Int. Multi-
conf. of Engineers & Computer Scientists, Hong Kong, pp. 2129-2134,
2009.

Boundary Elements and Other Mesh Reduction Methods XXXVII 147

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press

