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Abstract 

The voxel-based indirect boundary element method (IBEM) using the  
Laplace-kernel fast multipole method (FMM) is capable of analysing relatively 
large-scale problems. Furthermore, the voxel-based IBEM is suitable for 
acceleration using graphics processing units (GPUs). A typical application of the 
IBEM is the analysis of electrostatic fields for virtual-human anatomical voxel 
models such as the model called Duke provided by the IT’IS Foundation. An 
important property of voxel-version Duke models is that they have different voxel 
sizes but the same structural feature. This property is useful for examining the 
O(N) and O(D2) dependencies of the calculation times and the amount of memory 
required by the FMM-IBEM, where N and D are the number of boundary elements 
and the reciprocal of the voxel side length, respectively. In this study, the O(N) 
and O(D2) dependencies of the voxel-based GPU-accelerated FMM-IBEM were 
confirmed by analysing Duke models with voxel side lengths of 5.0, 2.0, 1.0, and 
0.5 mm. The finest model comprised 2.2 billion voxels with 61 million square 
boundary elements, and a linear equation solver on a personal computer with four 
GPUs required 1,276 s to obtain a solution. In addition, a technique is proposed to 
improve the convergence performance of the linear equation solver by considering 
the non-uniqueness of the electric potential, and its effectiveness is demonstrated. 
Keywords:  voxel-based analysis, electrostatic field, indirect boundary element 
method, virtual-human model, fast multipole method, graphics processing unit, 
non-uniqueness of solutions. 
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1 Introduction 

Various types of electromagnetic field analyses based on voxel models have been 
employed widely with the finite difference method, finite element method, etc. 
(e.g. Dawson et al. [1, 2], Hatada et al. [3]). The main advantages of voxel-based 
analysis include the facile production of realistic models from three-dimensional 
image data and the simple data structure, which is suitable for storage, handling, 
and visualisation. These advantages facilitate the analysis of relatively large-scale 
realistic models, particularly anatomical human models produced from magnetic 
resonance images.  
     Voxel-based boundary element methods (BEMs) for analysing relatively 
small-scale problems have been reported frequently. However, a voxel-based 
indirect BEM (IBEM) was applied to relatively large-scale problems by Hamada 
and Kobayashi [4] using the Laplace-kernel fast multipole method (FMM) 
(Greengard and Rokhlin [5]). Furthermore, this IBEM was accelerated using 
graphics processing units (GPUs) (Hamada [6, 7]) with NVIDIA’s compute 
unified device architecture (CUDA) (NVIDIA [8]), thereby obtaining high-
performance computation, even with a personal computer. This IBEM was used 
to analyse the electrostatic fields in human voxel models that describe the 
conductivities of biological tissues.  
     The IT’IS Foundation provides an adult male model called Duke (Christ et al. 
[9]), which was originally a surface-based model, but voxel-version models are 
available for voxel-based analyses. An important property of voxel-version Duke 
models is that they have different voxel sizes but the same structural feature. This 
property is useful for examining the O(N) and O(D2) dependencies of the 
calculation times and the amount of memory required by the FMM-IBEM, where 
N and D are the number of boundary elements and the reciprocal of the voxel-side 
length, respectively. Note that the O(D2) dependency appears when the full size of 
the model under analysis is fixed.  
     In this study, the O(N) and O(D2) dependencies of the voxel-based GPU-
accelerated FMM-IBEM were confirmed by measuring the calculation times and 
the amount of memory required to analyse Duke models with voxel-side lengths 
of 5.0, 2.0, 1.0, and 0.5 mm. A technique is also proposed for improving the 
convergence performance of the linear equation solver for the IBEM, and its 
effectiveness is demonstrated. The proposed technique considers both the  
non-uniqueness of the electric potential and the existence of isolated voxel clusters. 

2 Voxel-based indirect BEM with GPU-accelerated FMM 

2.1 Magnetically induced electrostatic field analysis for biological samples 

The basic equations of magnetically induced low-frequency faint currents in 
biological tissue were reported previously, e.g. by Dawson et al. [1], where it is 
assumed that the displacement current and secondary magnetic field are negligibly 
small. After applying an external magnetic flux density B0 and a vector potential
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0A  which satisfy B0 =  A0, the induced electrostatic field E, the current density

J , and the scalar potential   satisfy the following equations: 
 

   0j AE , EJ  , 02   ,                                 (1) 

 
where j,  , and   are the imaginary unit, angular frequency, and conductivity, 
respectively. The electric fields on both sides of a boundary surface with a unit 
normal vector n  satisfy the following boundary equation:  
 

nEnE    .                                            (2) 

 
The subscripts   indicate the plus or minus side of the boundary with respect to
n . An indirect BEM is used to analyse the Laplace equation in eqn (1) by solving 
the simultaneous linear equations expressed in eqn (2). 

2.2 Voxel-based IBEM 

The voxel-based IBEM starts by converting a cubic-voxel model into an 
equivalent boundary element model by considering a square boundary sandwiched 
between two voxels with different conductivities as a square boundary element. 
The N pieces of the boundary elements are assumed to have uniform surface 

charge densities ix  (i = 1 to N), which numerically simulate   in eqn (1). The 

surface integral of nE   on the jth element is as follows: 
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where ir  is the position vector on the ith element. Each boundary equation is 

formulated as a surface integral of eqn (2) on each square boundary element:  
 

  SS
jj SS

dd    nEnE  .                                (4) 

 
The simultaneous linear equations bx C  are composed of eqn (4) into which 
eqn (3) is substituted, where C  is an NN   coefficient matrix, x  is an 1N   
unknown vector, and b  is an 1N  constant vector. The surface charge densities
x are determined by numerically solving bx C . The fields of E and J  are 

calculated for all the voxel centres on the basis of the value of x  determined using 
an integral equation which is similar to eqn (3) in the post-processing stage. 
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2.3 Technique for obtaining a unique solution without numerical deviations 

Eqn (4) corresponds to the Neumann boundary condition; thus, the unknown 
charge densities x  have non-uniqueness due to the non-uniqueness of the electric 
potential. Some techniques are required to obtain a unique solution. First, the ith 
rows of C and b are divided by the diagonal component cii of C to scale cii unity. 
Second, Cx = b is separated into two parts, i.e. an arbitrary kth row and the other 
rows. The kth row can be regenerated by the others with elementary row operations 
because of the linear dependence due to the non-uniqueness. Third, the kth row is 
replaced by the following equation, which states that the total polarisation charge 
is physically zero: 
 

0)11( x ,                                                 (5) 
 

where (1…1) is a 1 N constant vector. The simultaneous equations obtained yield 
a unique mathematical solution (Hamada and Kobayashi [4]). However, the 
numerical solution of the kth unknown, xk, tends to exhibit a measurable deviation 
because of the diagonally non-dominant nature of eqn (5). Fourth, we transform 
the simultaneous equations continuously into the following form: Cc + βUx/N = 
b, where β is an arbitrary scalar constant which is set to be approximately one, and 
U is an N   constant matrix, where all entries are one. Every row of βUx/N  
represents β times the average of x. Finally, by rescaling the diagonal components 
to unity, the following simultaneous equations are obtained: 
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     Eqn (6) provides a unique numerical solution without the deviation of xk, and 
it can be implemented easily in iterative solvers for simultaneous linear systems. 
However, a voxel model sometimes comprises a number of clusters of voxels 
which are isolated by the air region, which has a conductivity of zero. In these 
cases, eqn (6) is modified on the basis of the fact that the total charge in each 
isolated cluster is zero. If two clusters consisting of N1 and N2 surface elements are 
considered, eqn (6) is modified to the following form:  
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where the sizes of Cij and bi are Ni Nj and Ni 1, respectively. Note that if only 
closed-region problems are analysed, the field in each cluster can also be solved 
with eqn (6) simply by considering the voxels in the cluster. However, eqn (7) is 
available without any such restriction. 
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2.4 Voxel-based IBEM with GPU-accelerated FMM 

The FMM (Greengard and Rokhlin [5]) is one of the best-known algorithms used 
to accelerate iterative solvers for simultaneous linear equations during BEM 
analysis. The Laplace-kernel FMM calculates the Coulombic interactions among 
the elements by separating the calculation process into two parts: (i) the direct 
interaction calculation of nearby elements and (ii) the non-straightforward 
interaction calculation with multipole- and local-expansion coefficients, which are 
referred to as the ‘near-part’ and ‘far-part’ calculations, respectively, in the present 
study. The translation algorithm used to convert the multipole-expansion 
coefficients into local-expansion coefficients in this study was a diagonal-form 
translation algorithm (Greengard and Rokhlin [5]). It is easy to apply FMM to the 
voxel-based BEM by considering a cubic-shaped cluster of voxels, e.g. 6 × 6 × 6 
= 63 cubic voxels, as a leaf cell defined in the FMM algorithm.  
     The GPU-accelerated FMM algorithm has been employed in many previous 
studies (e.g. Gumerov and Duraiswami [10] and Yokota et al. [11]). Details of 
GPU acceleration for the voxel-based FMM-IBEM were reported by Hamada  
[6, 7]. The basic points used to estimate the performance of the GPU-accelerated 
FMM with CUDA (NVIDIA [8]) are summarised as follows. 
     The GPU operations are classified into the following three categories: (i) using 
the GPU register and GPU shared memory, (ii) using the memories in (i) plus  
the GPU device memory, and (iii) using the memories in (ii) plus the CPU  
memory. The times required for these operations satisfy the following 
relationship: (i) << (ii) << (iii).    
     In the present study, CUDA kernels execute the following processes, almost in 
series: (a) transferring source data from the device memory to the register or shared 
memory using operation (ii), (b) collecting source data and producing target data 
with operation (i), and (c) transferring target data from the register or shared 
memory to the device memory using operation (ii). 
     The data for the elements and expansion coefficients are accessed via the cell 
number. Thus, the times required for processes (a), (b), and (c) are affected by the 
number of cells (or leaf cells) and by the amount of data in a cell, which vary 
according to the parameter settings. The time required for (b) is affected by the 
number of numerical operations, which depends on the contents of the collection 
and production processes, and the performance of the multiprocessor.  

2.5 Complexity of a voxel-based IBEM with a GPU-accelerated FMM  

The number of numerical operations and the amount of memory required by the 
Laplace-kernel FMM-IBEM are expected to have O(N) dependencies. During 
voxel-based analyses, N roughly exhibits an O(D2) dependency, where D is the 
reciprocal of the voxel side length when the full size of the model being analysed 
is fixed. The O(D2) dependency of the boundary elements contrasts with the O(D3) 
dependency of the number of volume elements, e.g. voxels. The CPU calculation 
time is almost proportional to the number of numerical operations. The GPU 
calculation time is roughly proportional to the number of numerical operations 
because it is affected by the time required for operations (i) and (ii).  
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3 Virtual-human model Duke 

The IT’IS Foundation (www.itis.ethz.ch/vip) provides a series of anatomical 
virtual human models including an adult male model called Duke (Christ et al. [9]) 
which measures 1.77 m in height and consists of 77 tissue types. It was originally 
defined as a surface model, and we are contractually permitted to use its 
derivational voxel-version models in general program codes. Ready-made voxel-
version models are provided in a distribution DVD with voxel-side lengths of 5.0, 
2.0, 1.0, and 0.5 mm. The specifications of the models are summarised in Table 1. 
The number of voxels shows an O(D3) dependency and the maximum number of 
total voxels exceeds 2 billion. The number of boundary elements, N, roughly 
exhibits an O(D2) dependency, which is approximately O(D2.1), and the maximum 
value of N reaches 61 million. The number of fragment clusters fluctuates from 
zero to nine. The isotropic tissue conductivities are set mainly by referring to 
Hirata et al. [12]. Figure 1 shows the tissue numbers and calculated values of |E
for models with 5.0 and 0.5 mm voxel side lengths.  In the present study, four 
voxel-version Duke models were used as a series of models with the same 
structural feature to examine the O(N) and O(D2) dependencies of the calculation 
time and the amount of memory required by the voxel-based FMM-IBEM. 
 
 

 
     (a) 5 mm,       (b) 5 mm,  (c) 5 mm,     (d) 0.5 mm,      (e) 0.5 mm,  (f) 0.5 mm, 
     tissue no.        log|E|.        log|E|.          tissue no.          log|E|.          log|E|.   

Figure 1: Tissue number and calculated values of |E| in the Duke models. 
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Table 1:  The numbers of voxels, boundary elements and isolated clusters. 

Voxel-side length 5.0 mm 2.0 mm 1.0 mm 0.5 mm 
Voxels in the x direction 112 272 544 1084 
Voxels in the y direction 58 143 285 566 
Voxels in the z direction 362 904 1806 3610 
Total voxels 2,351,552 35,161,984 280,002,240 2,214,893,840 
Tissue voxels 548,164 8,567,668 68,549,358 548,386,439 
Boundary elements, N 472,284 3,617,128 15,070,962 61,492,477 
Clusters: main + fragments 1 + 3 1 + 0 1 + 1 1 + 9 

4 Computing environment and settings used for calculations 

A personal computer running 64-bit Microsoft Windows 7 was used to perform 
the calculations. The computer had an Intel Core i7-4960X CPU (six CPU cores, 
3.6 GHz), 64 GiB of RAM, and four NVIDIA GTX TITAN GPUs, where a GPU 
has 6 GiB of GDDR5 device memory, 14 multiprocessors (2,688 CUDA cores), 
and 48 kiB of shared memory per multiprocessor. Each GPU was used in the DP 
mode on a PCI Express 3.0 bus. The developed programs were compiled by the 
CUDA 5.5 NVCC compiler and Intel Visual FORTRAN Composer XE 2013 in 
Microsoft Visual Studio 2012. The number of OpenMP threads was set up to 12.  
The applied 50-Hz AC homogeneous magnetic field B0 = B0k had strength of  
1 µT. The vector potential was defined as A0 = 0.5B0 (-yi + xj), where i, j, and k 
are the unit vectors parallel to the x, y, and z axes, respectively.   
     The order of the multipole and local expansions was set to 10 in the FMM 
algorithm. The diagonal-form translation algorithm (Greengard and Rokhlin [5]) 
was adopted. The voxel-cluster sizes used to define the leaf-cell size were 53, 63, 
73, 83, or 93. Bi_IDR(s) (Onoue et al. [13]) was used as the iterative solver with s 
= 3. This solver requires one matrix–vector-product calculation per iteration step. 
In eqns (6) and (7), β = 1. Convergence occurred when the relative residual 
Euclidean norm was less than 10-6, but this criterion value was set to 10-12 in 
subsection 5.1.  

5 Results 

5.1 Improving the convergence performance of the linear equation solver 

The convergence performance of the linear equation solver was investigated to 
confirm the validity of eqns (6) and (7). The voxel side length, the number of 
fragment clusters, and the leaf-cell size were 5.0 mm, 3, and 73 voxels, respectively. 
Figures 2 (a), 2 (b), and 2 (c) show the results obtained using no measures, eqn (6), 
and eqn (7), respectively. The horizontal axis shows the number of iteration steps. 

The vertical axis shows the relative residual norm and the sum of ix  ( 1
N

ii x ) 

over the standard deviation of ix , which is an index of the deviation of the total 

charges from zero. In the first case in Figure 2 (a), the index of deviation increased 
rapidly around the 140th step and remained almost constant at approximately  
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10-1. The relative residual decreased gradually with several stagnant periods. The 
increase in the index tended to decelerate the convergence as well as degrade the 
quality of the solution. Finally, the calculation was terminated at the 496th step 
owing to an execution error. In the second case in Figure 2 (b), the relative residual 
stagnated at approximately 10-8, although the index of deviation remained at small 
values of approximately 2 10-8. This stagnation was due to the lack of constraints 
on the zero total charge in an individual cluster. Finally, the calculation was 
terminated at the 490th step. In the third case in Figure 2 (c), the relative residual 
decreased almost uniformly to less than 10-12, and the index of deviation remained 
at small values of approximately 2 10-8. These results demonstrated that eqn (7) 
is effective in improving the convergence performance when a number of isolated 
voxel clusters exist. This implies that the use of eqn (7) ensures the quality of the 
solution even with a relatively high value for the convergence criterion. 
 

 

Figure 2: Convergence performance with eqns (6) and (7). 

5.2 Calculation times with CPU code 

The CPU calculation times required by the linear equation solver to analyse the 
four Duke models were measured, as shown in Figure 3. Table 2 lists the 
calculation times and iteration steps required when the fastest one-step time or the 
fastest total time was observed for each model, which are highlighted in boldface 
type. The number of iteration steps required was almost constant and ranged from 
95 to 118. Figures 3 (a) and 3 (b) show the dependencies of the one-step 
calculation time on N and D, respectively. Figure 3 (a) shows the least-squares line 
of the fastest data for each N. The slope shows that the dependency is O(N0.954). In 
a similar manner, Figure 3 (b) shows that the dependency is O(D2.017). In addition, 
the dependencies of the near- and far-part calculation times are O(N0.970) and 
O(N0.935), respectively, based on the fastest parameter settings in Figure 3. This 
confirms that the voxel-based IBEM approximately exhibits O(N) and O(D2) 
dependencies on the CPU calculation time, as expected. 
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(a) One-step time versus N.                      (b) One-step time versus D.  

Figure 3: Dependencies of the one-step CPU calculation time on N and D. 

 

Table 2:  Calculation times with CPU code. 

Voxel-side 
length 

Voxels in 
a leaf  

Time for one 
step / s 

Time for 
near-part / s 

Time for far-
part / s 

Iteration 
steps  

Total time for  
solver / s 

5.0 mm 53 0.6546 0.3518 0.2945 103 67.42 
2.0 mm 53 4.454 2.126 2.266 105 467.6 
2.0 mm 63 4.614 3.060 1.496 99 456.8 
1.0 mm 63 17.34 9.465 7.627 110 1,906.9 
0.5 mm 73 68.52 38.80 28.78 118 8,084.7 
0.5 mm 83 74.53 51.45 22.17 95 7,080.0 

 
 

5.3 Calculation times with GPU code 

The GPU calculation times required by the linear equation solver were measured, 
as presented in Figure 4 and Tables 3 and 4. Figures 4 (a) and 4 (b) show that the 
dependencies of the one-step calculation time on N and D are O(N1.019) and 
O(D2.155), respectively. This confirms that the GPU-accelerated voxel-based 
IBEM approximately exhibits O(N) and O(D2) dependencies. However, the 
dependencies were degraded slightly compared with those using CPU code. Table 
3 summarises the calculation times and speed-up ratios compared with the CPU 
times. The dependencies of the near- and far-part calculation times are O(N1.114) 
and O(N0.904), respectively, with the fastest settings shown in Figure 4. 
     The far-part speed-up ratios in Table 3 were all low, ranging from 3.22 to 4.90. 
This was because the number of far-part calculations (process (b) with operation 
(i), see subsection 2.4) was of the same order as the number of device-memory 
read/write (process (a) and (c) with operation (ii)) operations due to the diagonal-
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form translation algorithm. Thus, the calculation speed was strongly restricted by 
the latter. In contrast, the near-part speed-up ratios in Table 3 range widely from 
6.45 to 28.6. This was because the number of near-part calculations (process (b) 
with operation (i)) was much higher than the number of device-memory read/write 
operations due to the repeated use of the shared memory data by the interaction 
calculation. The number of near-part calculations depends strongly on the number 
of elements in a leaf cell, which can be estimated roughly by N/L, where L is the 
number of leaf cells in Table 4. Figure 5 shows the dependency of the near-part 
speed-up ratios on N/L.  
     The one-step time speed-up ratios were approximately 11 for the 5.0, 2.0, and 
1.0 mm models, whereas it was 7.64 for the 0.5 mm model. Table 3 suggests that 
a better speed-up ratio of approximately 11 might be obtained if a leaf cell is 
defined by 103 voxels. However, this condition could not be executed because the 
shared memory usage exceeded 48 kiB, which was inferred on the basis of the 
shared memory usage in Table 4. On the basis of a practical definition of the speed-
up ratio as the fastest CPU time to the fastest GPU time for each model, the  
one-step time speed-up ratios for the 5.0, 2.0, 1.0, and 0.5 mm models were  
 8.28,  8.33,  7.07, and  6.09, respectively.  
     Table 4 also lists the number of iteration steps required and the total calculation 
time. The former was almost constant, as is the case for the CPU calculation. The 
solver required 1,276 s for the finest model analysis. 
 
 
 

          
(a) One-step time versus N.                       (b) One-step time versus D.  

Figure 4: Dependencies of the one-step GPU calculation time on N and D. 
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Table 3:  Calculation times and speed-up ratios with the GPU code. 

Voxel-side 
length  

Voxels 
in a leaf  

One step Near-part Far-part 
Time / s Speed-up Time / s Speed-up Time / s Speed-up 

5.0 mm 53 0.09418  6.95 0.01768  19.9 0.07004  4.21 
63 0.08424  8.87 0.02768  19.6 0.05055  3.92 
73 0.07906  11.9 0.03194  24.7 0.04080  3.49 
83 0.09308  13.1 0.05359  20.5 0.03350  3.29 
93 0.08791  18.1 0.05195  28.6 0.02968  3.22 

2.0 mm 53 0.6842  6.51 0.1439  14.8 0.4906  4.62 
63 0.5958  7.74 0.2125  14.4 0.3339  4.48 
73 0.5346  10.5 0.2417  18.4 0.2434  4.57 
83 0.6266  11.1 0.3877  15.5 0.1899  4.53 
93 0.5358  16.6 0.3365  24.3 0.1492  4.56 

1.0 mm 53 3.414  5.41 0.6103  11.3 2.555  4.43 
63 2.898  5.98 0.9768  9.69 1.717  4.44 
73 2.565  7.46 1.140  11.6 1.221  4.64 
83 2.893  7.72 1.784  9.97 0.906  4.76 
93 2.454  11.2 1.535  15.5 0.716  4.80 

0.5 mm 63 13.70  5.01 4.156  6.87 8.723  4.48 
73 11.84  5.68 4.867  7.97 6.162  4.67 
83 13.43  5.55 7.977  6.45 4.637  4.57 
93 11.25  7.64 6.791  9.89 3.643  4.90 

 

Table 4:  Calculation times and GPU memory usage with the GPU code. 

Voxel-
side 
length  

Voxels 
in a 
leaf  

Iteration 
steps  

Total 
time for  
solver / s 

The 
number of 
leaves, L 

Shared memory 
for near-part 
calculation / bytes 

Device 
memory per 
card / 106 bytes 

5.0 mm 53 103 9.701 6,378 7,210 55.5 
63 97 8.171 3,985 12,936 44.5 
73 99 7.827 2,680 21,134 39.1 
83 112 10.43 1,891 32,248 41.0 
93 98 8.615 1,435 46,722 44.9 

2.0 mm 53 105 71.838 67,335 7,210 393.7 
63 99 58.988 42,591 12,936 281.0 
73 116 62.008 28,884 21,134 215.5 
83 102 63.916 20,515 32,248 178.8 
93 102 54.654 15,119 46,722 154.8 

1.0 mm 53 104 355.02 379,477 7,210 1,843.3 
63 109 315.85 243,518 12,936 1,298.9 
73 107 274.44 167,226 21,134 960.6 
83 104 300.88 119,952 32,248 760.0 
93 109 267.48 89,468 46,722 617.2 

0.5 mm 63 110 1,506.64 1,306,251 12,936 6,055.9 
73 119 1,408.59 910,560 21,134 4,443.8 
83 95 1,276.10 662,703 32,248 3,476.6 
93 117 1,315.69 499,789 46,722 2,769.5 
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Figure 5: Near-part speed-up vs. 
N/L.  

Figure 6: Device memory usage 
vs. N. 

5.4 Device memory usage with the GPU code 

The GPU device memory usage per GPU card was measured and is presented in 
Table 4 and Figure 6. The finest model analysis required approximately 3 GiB 
with the fastest parameter settings. Figure 6 shows the least-squares line of the 
data that required the least memory for each model. The data obtained from the 5-
mm voxel model were excluded from the least-squares because they included 
measurable constant components, which would have made the slope gentler. The 
slope exhibits an O(N1.018) dependency. This confirms that the IBEM 
approximately exhibits an O(N) dependency on the device memory, as expected.  

6 Summary 

A voxel-based GPU-accelerated FMM-IBEM was used to analyse magnetically 
induced electrostatic fields in a virtual-human model called Duke. An important 
property of the voxel-version Duke models is that they have different voxel sizes 
but the same structural feature. By exploiting this property, the O(N) and O(D2) 
dependencies of the calculation times and the amount of device memory 
required for the IBEM were confirmed successfully. The linear equation solver 
required 1,276 s to analyse the finest model with 61 million boundary elements 
and 2.2 billion voxels using a personal computer with four GPUs. In addition, a 
technique was proposed to improve the convergence performance of the linear 
equation solver for the IBEM, and its effectiveness was demonstrated successfully. 
This research was supported by JSPS KAKENHI 25390153. 
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