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Abstract 

In general, internal cells are required to solve nonhomogeneous elastic problems 
using a conventional boundary element method (BEM). However, in this case, the 
merit of the BEM, which is the ease of data preparation, is lost. In this study, it is 
shown that two-dimensional nonhomogeneous elastic problems can be solved 
using the triple-reciprocity BEM without the use of internal cells. Young’s 
modulus and Poisson’s ratio are variable in nonhomogeneous elastic materials. 
The distribution of a fictitious body force generated by a nonhomogeneous 
material is interpolated using boundary integral equations. A new computer 
program was developed and applied to solve several problems.  
Keywords: boundary element method, stress analysis, nonhomogeneous 
materials. 

1 Introduction 

Stress problems of nonhomogeneous materials can be solved by a conventional 
boundary element method (BEM) using internal cells for domain integrals [1]. 
   In this case, however, the merit of the BEM, which is the ease of data 
preparation, is lost. Several countermeasures to prevent this loss have been 
considered. For example, Nowak and Neves proposed the conventional multiple-
reciprocity boundary element method (MRBEM). In the conventional MRBEM, 
the distribution of body forces must be given analytically, and fundamental 
solutions of higher order are used to make the solutions converge. Accordingly, 
this method is not suitable for the analysis of materials with nonhomogeneous 
elasticity. The dual-reciprocity BEM has been proposed for reducing the 
dimensionality of problems, which is an advantage of the BEM [2]. However, it is 
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difficult to apply the dual-reciprocity BEM to nonhomogeneous problems. Sladek 
et al. [3] applied the local integral equation method to nonhomogeneous problems 
without internal cells. However, it was assumed that Poisson’s ratio is constant. 
Xiao-Wei Gao et al. [4] applied the radial integral method to nonhomogeneous 
problems without internal cells. However, it was also assumed that Poisson’s ratio 
was constant. Ochiai et al. [5] and Ochiai and Kobayashi [6] proposed the triple-
reciprocity BEM (improved multiple-reciprocity BEM) without using internal 
cells for elastoplastic problems. Using this method, a highly accurate solution can 
be obtained using only fundamental solutions of low order and with reduced need 
for data preparation. They applied the triple-reciprocity BEM without using 
internal cells to two-dimensional elastoplastic problems using initial strain 
formulations. Ochiai and Kobayashi [7] applied the triple-reciprocity BEM to 
thermo-elastoplastic problems with arbitrary heat generation and to three-
dimensional elastoplastic problems using initial strain formulations. Only the 
triple-reciprocity BEM and the local integral equation method have been applied 
to elastoplastic problems without internal cells.  
   In this study, the triple-reciprocity BEM is applied to two-dimensional 
nonhomogeneous elastic problems. Young’s modulus and Poisson’s ratio are 
variable in nonhomogeneous elastic materials. In this method, boundary elements 
and arbitrary internal points are used. The arbitrary distributions of a fictitious 
body force generated by a nonhomogeneous elastic material are interpolated using 
boundary integral equations and internal points. This interpolation corresponds to 
a thin plate spline. A new computer program is developed and applied to several 
nonhomogeneous elastic problems to clearly demonstrate the theory. This method 
is demonstrated to be efficient for calculation.  

2 Theory 

2.1 Stress analysis of nonhomogeneous materials 

Denoting a displacement as iu , the relationship between stress ij  and strain ij

 is given by  
 

ijijkkij pp  )(2)(  ,                   (1) 

 
where )( p  and )( p  are Lame’s constants at point p . The relationship 

between displacement iu  and strain ij  is given by  
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   Denoting a body force as iF , the following equation is obtained from Eq. (1) 
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   In Eq. (3), the terms associated with a nonhomogeneous material are denoted 

a fictitious body force )(]1[ qbi  
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   The following boundary integral equation must be solved [1, 6–8]: 
 

   dqbqPudQuQPpQpQPuPuc jijjijjijjij )(),()](),()(),([)( ]1[]1[]1[ ,   (5) 

 

where cij is the free-term coefficient. Moreover, ju  and jp  are the jth 

components of the displacement and surface traction, respectively. Furthermore, 
  and  are the analyzed domain and its boundary, respectively. Denoting the 
distance between the observation point and the loading point by r, Kelvin’s 

solution ]1[
iju  and ijp  are given by 
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where 0  is Poisson’s ratio and 0G  is the shear modulus at point p . Moreover, 

we set )1/('
0    for the plane stress. The notation nｉ is used for the ith 

component of the outward unit normal vector on  . Equation (5) has a domain 
integral． 

2.2 Interpolation of body force 

Interpolation is performed using boundary integrals to avoid the domain integral 

in Eq. (3) [9, 10]. The two-dimensional distribution of the body force )(]1[ qb S
j  is 

interpolated using the integral equations to transform the domain integral into a 
boundary integral. The following equations are used for interpolation: 
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where   
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   This interpolation is assumed for each body force ( yxj , ).  

2.3 Boundary integral equations used for interpolation 

The polyharmonic function ][ fT  satisfies the relationship  

),(),( ][]1f[2 qpTqpT f  .                    (11) 

 

Therefore, the function ][ fT  can be obtained as 
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The polyharmonic function ][ fT  in two-dimensional problems is given by 
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where ff 2!)!2(  (2f  2)･･･4･2 and qC  is an arbitrary constant. 0qC  can 

be assumed for the interpolation. The body force )(]1[ Pb S
j  is given by Green’s 

theorem and Eqs. (8) and (9) as  
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where c = 0.5 on the smooth boundary and c = 1 in the domain. The curvature of 

the body force distribution )(]2[ Pb S
j  is given by Green’s theorem and Eq. (9) as 
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   The fictitious body force S
ib ]1[ is known from Eq. (4). Then, the boundary 

unknowns nb Sf
j  /][  and the unknowns )(]3[

m
P

j qb at interior points can be 

calculated by simultaneous solution of the integral equations (14) and (15) with 
the latter being collocated at M interior points and assuming 0)(]2[ Qb S

i . 

 

2.4 Triple-reciprocity boundary element method 

The functions ][ f
iju  are defined as 
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Using Eqs. (8), (9), (11) and (16), and Green’s second identity, Eq. (5) becomes  
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From Eq. (17), the gradient of the displacement is obtained as  
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The higher-order Kelvin’s solution ),(][ qpu f

ij  is defined as  
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Substituting Eq. (13) into Eq. (19), we obtain 
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From Eq. (20), the derivatives in Eq. (18) are obtained as follows: 
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   In the same manner, the internal stress can be obtained. The relationship 
between the displacement and stress is given as 
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Substituting the values of Eq. (18) into Eq. (27), the internal stress ij  can be 

obtained.   
   

2.5 In the case of composite materials  

In the case of composite materials or a layer structure, the distribution of Lame’s 

constant )(1 q  is continuous but not smooth as shown in Figure 1. The fictitious 

body force ]1[
jb in Eq. (6) has a discontinuous value of D

jb ]1[ . Therefore, the 

following equations can be used to interpolate the fictitious body force: 
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   As shown in Figure 1(a), the distribution of Lame’s constant )(1 q  has a 

discontinuous value D
1 . The following equation can be used for the distribution 

of )(1 q : 
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where ]2[]1[
1  D . As shown in Figure 1(b), we can obtain the fictitious line 

force )(]1[ qb L
j  in Eq. (4), which is generated from the discontinuous Lame’s 

constant, using 0B . We can express )(]1[ qb L
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where '/][][ nuq ii  . From Eq. (30), we can obtain the following boundary 

integral equation. 
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The boundary '  is the interface between two materials with different properties.  

 
 
 

      

(a) Continuous case    (b) Two different materials   (c) Concept of fictitious force  

Figure 1: Non-smooth distributions of Lame’s constant . 
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3 Numerical examples 

To verify the accuracy of the present method, the stresses are computed in a 
rectangular plate made of a functionally graded material as shown in Figure 2. The 
Length L and width of the plate are 100 mm and 40 mm, respectively. The plate is 
restricted in the x direction at 0x  and the load is 1000p N/mm at Lx  .  

 

 

Figure 2: Nonhomogeneous rectangular plate (boundary elements and internal 
points). 

   Young’s modulus )(xE for the plate is given by  
 

B
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x
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
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where 100A GPa， 200B GPa and Poisson’s ratio is 3.0 . Figure 3 
shows the displacements distribution with the exact solution. In the case of a linear 
change in Young’s modulus, the displacement is obtained. Here, Young’s modulus 

)(xE  is given by  

B
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x
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where 100A GPa， 200B GPa and Poisson’s ratio is 3.0 ．Figure 4 
shows the displacements distribution with the exact solution.  
   The displacement and stress in a nonhomogeneous square plate of length 

100L mm, as shown in Figure 5, are next calculated. The square plate is 
restricted in the x  direction at 0x  and the load is 1000p N/mm at Lx  . 

Young’s modulus )(xE  is given by 
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where GPaA 100 ， GPaB 200  and Poisson’s ratio is 3.0 ．Figure 6 
shows the stress distributions with the FEM solutions. In the next example, 
Poisson’s ratio is variable and given by 
 

B
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 ,                (37) 

where 0.2,A   0.4,B   and Young’s modulus is 200E GPa．Figure 7 

shows the displacement distribution with the FEM solution. 
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Figure 3: Displacement distribution of rectangular plate. 

 
 

 

Figure 4: Displacement distribution of rectangular plate. 

 
 

 

Figure 5: Square plate (boundary elements and internal points). 
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Figure 6: Stress distributions in square plate. 

 

 

Figure 7: Displacement distribution of square region with variable Poisson’s 
ratio. 

 
   Next, a laminated rectangular plate of length 10L mm, as shown in Figure 
8, is forced in the x  direction of 1000p N/mm. Here, Young’s modulus 

)(xE  is given by 

 














107200

73100

30200

)(

x

x

x

xE ,            (38) 

 
and the width of the plate is 4 mm. The rectangular plate is restricted in a x 
direction at 0x , and load is 1000p N/mm at Lx  . Figure 9 shows the 

displacements distribution with the exact solution.  
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   The stress distribution in a circular plate with a hole made of functionally 
graded material, as shown in Figure 12, was next calculated. The outer radius is 

30OR mm, the inner radius is 10IR mm and the internal pressure is 100P

MPa. Young’s modulus )(rE  is given by 

 
BRrrRArE I  ))(()( 0 ,          (39) 

 
where 10A GPa， 200B GPa, and Poisson’s ratio is 3.0 . Figure 13 
shows the displacement with the exact solution and Figure 14 shows the strain 
distribution with the exact solution.  

 
 

 

Figure 8: Boundary elements and internal elements of laminated plate. 

 

 

Figure 9: Displacement distribution of laminated plate. 
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   The stress distributions in composite square plate of a length L as shown 
in Figure 10 were also calculated. Young’s modulus in the square region is 
E = 200 GPa, and Young’s modulus in the circular region is 0 GPa, 100 GPa or 
400 GPa. The square plate is restricted in the x direction at x = 0, and the load is 
p0 = 100 N/mm at x = L. Figure 11 shows the displacements with the exact 
solutions.  



 

Figure 10: Square plate with a circular region. 

 

 

  
      E=0 GPa              E=100 GPa             E=400 GPa        

Figure 11: Displacements of plates with a circular region. 

 
 
 

   

Figure 12: Nonhomogeneous circular plate with a hole. 
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Figure 13: Displacement of circular plate. 

 

 

Figure 14: Stress distribution of circular plate. 

4 Conclusions  

The triple-reciprocity boundary element method was developed for the solution of 
two-dimensional elastic problems in nonhomogeneous solid bodies. A fictitious 
body force caused by a nonhomogeneous materials is used in its formulation. The 
sets of fundamental solutions for this analysis were derived. The main advantages 
of this method is that the use of internal cells is completely avoided. Thus, the 
merit of the BEM, which is the easy preparation of data, is retained because 
internal cells are not necessary. The numerical results provided for several 
examples illustrate the effectiveness and accuracy of the proposed method. 
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