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Abstract

In general, internal cells are required to solve nonhomogeneous elastic problems
using a conventional boundary element method (BEM). However, in this case, the
merit of the BEM, which is the ease of data preparation, is lost. In this study, it is
shown that two-dimensional nonhomogeneous elastic problems can be solved
using the triple-reciprocity BEM without the use of internal cells. Young’s
modulus and Poisson’s ratio are variable in nonhomogeneous elastic materials.
The distribution of a fictitious body force generated by a nonhomogeneous
material is interpolated using boundary integral equations. A new computer
program was developed and applied to solve several problems.

Keywords: boundary element method, stress analysis, nonhomogeneous
materials.

1 Introduction

Stress problems of nonhomogeneous materials can be solved by a conventional
boundary element method (BEM) using internal cells for domain integrals [1].

In this case, however, the merit of the BEM, which is the ease of data
preparation, is lost. Several countermeasures to prevent this loss have been
considered. For example, Nowak and Neves proposed the conventional multiple-
reciprocity boundary element method (MRBEM). In the conventional MRBEM,
the distribution of body forces must be given analytically, and fundamental
solutions of higher order are used to make the solutions converge. Accordingly,
this method is not suitable for the analysis of materials with nonhomogeneous
elasticity. The dual-reciprocity BEM has been proposed for reducing the
dimensionality of problems, which is an advantage of the BEM [2]. However, it is
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difficult to apply the dual-reciprocity BEM to nonhomogeneous problems. Sladek
et al. [3] applied the local integral equation method to nonhomogeneous problems
without internal cells. However, it was assumed that Poisson’s ratio is constant.
Xiao-Wei Gao et al. [4] applied the radial integral method to nonhomogeneous
problems without internal cells. However, it was also assumed that Poisson’s ratio
was constant. Ochiai ez al. [5] and Ochiai and Kobayashi [6] proposed the triple-
reciprocity BEM (improved multiple-reciprocity BEM) without using internal
cells for elastoplastic problems. Using this method, a highly accurate solution can
be obtained using only fundamental solutions of low order and with reduced need
for data preparation. They applied the triple-reciprocity BEM without using
internal cells to two-dimensional elastoplastic problems using initial strain
formulations. Ochiai and Kobayashi [7] applied the triple-reciprocity BEM to
thermo-elastoplastic problems with arbitrary heat generation and to three-
dimensional elastoplastic problems using initial strain formulations. Only the
triple-reciprocity BEM and the local integral equation method have been applied
to elastoplastic problems without internal cells.

In this study, the triple-reciprocity BEM is applied to two-dimensional
nonhomogeneous elastic problems. Young’s modulus and Poisson’s ratio are
variable in nonhomogeneous elastic materials. In this method, boundary elements
and arbitrary internal points are used. The arbitrary distributions of a fictitious
body force generated by a nonhomogeneous elastic material are interpolated using
boundary integral equations and internal points. This interpolation corresponds to
a thin plate spline. A new computer program is developed and applied to several
nonhomogeneous elastic problems to clearly demonstrate the theory. This method
is demonstrated to be efficient for calculation.

2 Theory
2.1 Stress analysis of nonhomogeneous materials

Denoting a displacement as #;, the relationship between stress 0j; and strain &

is given by
0y = MP)eydy; +2u(p)e; (D

where A(p) and p(p) are Lame’s constants at point p . The relationship

between displacement  #; and strain &;; is given by

1 Ou; a”j
g, =—(—++—). 2
v 2(6xj ax-) &Y

1

Denoting a body force as  F, the following equation is obtained from Eq. (1)
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ou ou; ou; )
u +(ﬂ/+ )i_j+%_j+a_ﬂ_j 8_;1%+F; =0. (3)
ox; Ox; ox; Ox; Ox; Ox;  Ox; Ox;

In Eq. (3), the terms associated with a nonhomogeneous material are denoted
a fictitious body force 51(g)

04 Qu; 6_,u ou,; 6,u Qu;

= 4)
6 8x axj 0Ox; 6x 8x

bl(q) =

The following boundary integral equation must be solved [1, 6-8]:
e, (P)=[[ul (P,O)p;(Q) - p;(P,Ou;(Q)ldl + [ uld (P, )b (g)d2,  (5)

where ¢; is the free-term coefficient. Moreover, u; and p; are the jth

components of the displacement and surface traction, respectively. Furthermore,
Q) and T are the analyzed domain and its boundary, respectively. Denoting the
distance between the observation point and the loading point by r, Kelvin’s

solution u,[]” and p; are given by
uM(p q):; (3-4v, )5--ln[lj+r T (6)
P 8a(1-v)G, OV ) P
or 7
Pi(p.q) = m{[(l 2v9)0; +2r, 1, ]8 —(1=2vo)(r,in; —r,;n;)}, (7)

where v, isPoisson’sratioand G isthe shear modulusatpoint p .Moreover,

we set v(') =v/(1+v) for the plane stress. The notation n ; is used for the ith

component of the outward unit normal vector on I". Equation (5) has a domain
integral.

2.2 Interpolation of body force

Interpolation is performed using boundary integrals to avoid the domain integral
in Eq. (3) [9, 10]. The two-dimensional distribution of the body force bEI]S (q9) is

interpolated using the integral equations to transform the domain integral into a
boundary integral. The following equations are used for interpolation:

V3 (q)=-b1P (g), (8)

Bg)=-b"(q), ©9)
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where

M
Bgy=Y tq,)5@-4,) . (10)

m=l1

This interpolation is assumed for each body force ( j =x,y).

2.3 Boundary integral equations used for interpolation

The polyharmonic function 701 satisfies the relationship
VT (p,9) =TV (p,g) .- (11
Therefore, the function T'/! can be obtained as
T < j'l(JrT[f]dr)dr. (12)
r

The polyharmonic function 7U/1 in two-dimensional problems is given by

) 20D ¢ Ry
(p,ci)——2 DT { ( j+ +sgn(f - )LZIJ 03
720D 1 -1
—27r[(2f Y { [}J+C +sgn(f—l)z }

where (2/)!!=2f(2f-2)---4-2and C, isanarbitrary constant. C, =0 can
be assumed for the interpolation. The body force bg-l]s (P) is given by Green’s
theorem and Egs. (8) and (9) as
Lf1s i
on on J (14)

cbgl]S (P) = ZZE .[F {T[f](P, 0)
= 2T (a),

m=1

§

where ¢ = 0.5 on the smooth boundary and ¢ = 1 in the domain. The curvature of
the body force distribution bE.z]S (P) is given by Green’s theorem and Eq. (9) as

f]S
Bpy=[. {T”(PQ) (Q)

J P Q)3T + 3 TP B (g). (15)

m=1
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The fictitious body force A!'"is known from Eq. (4). Then, the boundary
unknowns obl/1% /on and the unknowns b?]P (g,,) at interior points can be

calculated by simultaneous solution of the integral equations (14) and (15) with
the latter being collocated at M interior points and assuming 5 (0)=0.

2.4 Triple-reciprocity boundary element method

The functions u,ﬂf 1 are defined as

2ul{ N p,g)=ul N (p.q) . (16)

Using Egs. (8), (9), (11) and (16), and Green’s second identity, Eq. (5) becomes
cyu;(P) = [ [l (P,Q)p(Q) = p;; (P, Q)u,;(Q)]dT

[ (/18
+ ;2_:1( 1y [ &b[‘m(g) _”z[/fﬂ](P’Q)%ka—n(Q)} .

M
+ 2 ul (P, (q). (17)
m=1

From Eq. (17), the gradient of the displacement is obtained as

ou ,(P)

axk

aulll(P, op,; (P,
g ( Q)pj(Q)_ p,a( 0)

axk X

00 () - 20 24l (o)

=1 u(Q)ldT

2 :
+ 3 (-1 dr
fZ::]( Vit Ox,.0n ox;, on }

M, oy (P 9D,

+ L (@) (18)
The higher-order Kelvin’s solution u ( p,q) is defined as
B 5.7+,
) V) e (19)
2(1-v)G G
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Substituting Eq. (13) into Eq. (19), we obtain

2(f-1)
U
u[f] —

v 47r[(2f)!!]2(1—v)G<

[47(f =DE+22f =Dl

+[2f(1—4f+4fv)]F2+1—8f(1—v)]5,_~]->, (20)

where
7-8v

172G _4) @l

S
Fy =In(r)-C, —sgn(f 1) gzé : (22)

From Eq. (20), the derivatives in Eq. (18) are obtained as follows:

auz[].f] 213 {22 P
on _2”{(2f)!!}2(1—V)G< 2f(f-DF+@3f -6f+ )]r,ir,j

HRL(/ = DI-40-V)IF, + 2 =) =40 -v) GBS =25, fr.,n,
2/ (f =DF, +@f =D)nyr,+n,7.,)) (23)

p;; 1 or

—=——2—[0,7, ;+0 ;1\, 7, (1 =2V)S,; +4r,; 1,

e T T P lOur S (=203, )l
+n[1=2v)6; +2r,; 1, ; ]=n;(1=2v)(6; —2r,; 1, (24)

+n,(1=20)(S ) =27, 70 )},

8ul[jf 1 p2/-3

ox, 2202 N1 -v)G <{2[2f(f D+ G2 -6f +2)r,; r.

RS - DI-40-V)IF, + @ =) =40 -v)fGf -5, Ir.,
2/ (f =DF + Q2 =DIS,7, +y7), (23)
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oul/ o 24
oxox, C o 27{RNHNF1-v)G
+203 17 =147 +19f = O)r, 7, ;7 1oy 1
HQ2f =321 (f =D =41 =V)IF, +(617 =101 +3)}5;7.; 7y,
+[@2f =321 (f =DF, + (6 =10f +3)r, n (S, ;+8,7;
+ 2021 (f =DF, +Bf> = 6f + 2)mr, +n,7,)r., (26)
+2021(f =DF, + B> =6f +Dlr,;r,;my
+{2/(f DN -40-VIF, +Q2f -D)—40-v)fCf =2)}5;(n —ngr, 7))
+[2f(f =DF +Qf D16 (n; —ngr,gr, ;) + 6y (n; —ngr,gr,; )]>-

{2/ (f DS =9F,

In the same manner, the internal stress can be obtained. The relationship
between the displacement and stress is given as

_2A1-v(p)G(p)

L T I en

Substituting the values of Eq. (18) into Eq. (27), the internal stress O, can be

obtained.

2.5 In the case of composite materials

In the case of composite materials or a layer structure, the distribution of Lame’s
constant 4, (g) is continuous but not smooth as shown in Figure 1. The fictitious

body force bA[].u in Eq. (6) has a discontinuous value of b.E-I]D . Therefore, the

following equations can be used to interpolate the fictitious body force:

240118 _ _ g[21S [21D
VIS = pl21S _pl (28)
VZb[2]S __M b[S]P
== b () - (29)
m=1

As shown in Figure 1(a), the distribution of Lame’s constant 4,(g) has a

discontinuous value A7 . The following equation can be used for the distribution

of 4,(q):
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2=+, (30)

where /1D =AM A21 " As shown in Figure 1(b), we can obtain the fictitious line
force b; (e (¢) in Eq. (4), which is generated from the discontinuous Lame’s

constant, using B — 0. We can express b; (e (q) as

b (@)= VA Vu=Tim (2 - A" +¢*)/2

B—0 (31)
221 iy 00y 12
_( g +q )5((]_%)’
2
Bil = —pl1S 4 I (32)

where ¢! = 0u/on'. From Eq. (30), we can obtain the following boundary

integral equation.

cyu;(P) = [ [uf (P,Q)p;(Q) = py (P, Q)u (Q)IdT + [Lug (P,O)L (q)dT"
[f+1]
+ Z( Y[ JZ,U']S(Q) —ul/ (P, Q)abk (Q)}dr
=1 on
+ zum(P b (q). (33)
m=1

The boundary T is the interface between two materials with different properties.

. 5 B-0
[1] [2] q[ ] q[ ]
A(d) | A(a) )\[1] )\[2]
)\[1] A[Z] qm q [2]
AT A —L_
(a) Continuous case (b) Two different materials  (c) Concept of fictitious force

Figure 1:  Non-smooth distributions of Lame’s constant A .

WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press
www.witpress.com, ISSN 1743-355X (on-line)



Boundary Elements and Other Mesh Reduction Methods XXXVII 93

3 Numerical examples

To verify the accuracy of the present method, the stresses are computed in a
rectangular plate made of a functionally graded material as shown in Figure 2. The
Length L and width of the plate are 100 mm and 40 mm, respectively. The plate is
restricted in the x directionat x=0 and the loadis p ;=100 N/mmat x=L.

Y

=

Po

X

Figure 2:  Nonhomogeneous rectangular plate (boundary elements and internal
points).

Young’s modulus E(x) for the plate is given by
E(x)=4 sin(%) +B, (34)

where A4=-100GPa, B=200GPa and Poisson’s ratio is v =0.3. Figure 3
shows the displacements distribution with the exact solution. In the case of a linear
change in Young’s modulus, the displacement is obtained. Here, Young’s modulus
E(x) is given by

E(x)=Azx+B, (35)

where 4=-100GPa, B=200GPa and Poisson’s ratio is v =0.3. Figure 4
shows the displacements distribution with the exact solution.

The displacement and stress in a nonhomogeneous square plate of length
L =100 mm, as shown in Figure 5, are next calculated. The square plate is
restricted in the x direction at x=0 and the load is p (=100 N/mm at x=1.

Young’s modulus E(x) is given by
E(x, y)= Asin(ZY)sinZLy + B, (36)
L L
where 4A=-100GPa, B=200GPa and Poisson’s ratio is v=0.3. Figure 6

shows the stress distributions with the FEM solutions. In the next example,
Poisson’s ratio is variable and given by

v(x,y)= A4 sin(%) sin(%) +B, 37)

where A=-0.2, B=0.4, and Young’s modulus is E =200 GPa. Figure 7
shows the displacement distribution with the FEM solution.
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Figure 3:  Displacement distribution of rectangular plate.
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Figure 4:  Displacement distribution of rectangular plate.

Figure 5:  Square plate (boundary elements and internal points).
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Figure 6:  Stress distributions in square plate.
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Figure 7: Displacement distribution of square region with variable Poisson’s

ratio.

Next, a laminated rectangular plate of length L =10mm, as shown in Figure
8, is forced in the x direction of p (=100 N/mm. Here, Young’s modulus

E(x) isgiven by

200 0<x<3
E(x)=1100 3<x<7 , (38)
200 7<x<10

and the width of the plate is 4 mm. The rectangular plate is restricted in a x
direction at x=0, and load is p ,=100N/mm at x=L. Figure 9 shows the

displacements distribution with the exact solution.
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The stress distributions in composite square plate of a length L as shown
in Figure 10 were also calculated. Young’s modulus in the square region is
E =200 GPa, and Young’s modulus in the circular region is 0 GPa, 100 GPa or
400 GPa. The square plate is restricted in the x direction at x = 0, and the load is
po = 100 N/mm at x = L. Figure 11 shows the displacements with the exact
solutions.

The stress distribution in a circular plate with a hole made of functionally
graded material, as shown in Figure 12, was next calculated. The outer radius is
R, =30 mm, the inner radius is R; =10mm and the internal pressure is P =100

MPa. Young’s modulus E(r) is given by
E(r)=ARy-r)(r—R;)+B, 39)

where A=-10GPa, B=200GPa, and Poisson’s ratio is v =0.3. Figure 13
shows the displacement with the exact solution and Figure 14 shows the strain
distribution with the exact solution.

e
Po
o
X

Figure 8: Boundary elements and internal elements of laminated plate.

—_ =
oS =
T

o BEM

— Exact

Displacement (um)

© = N W A LN X O
T

Figure 9: Displacement distribution of laminated plate.
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X

Figure 10: Square plate with a circular region.

= - - E
SR — S — == =
s = = E ~ < E
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Figure 11: Displacements of plates with a circular region.

Figure 12: Nonhomogeneous circular plate with a hole.
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Figure 13: Displacement of circular plate.
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Figure 14: Stress distribution of circular plate.
4 Conclusions

The triple-reciprocity boundary element method was developed for the solution of
two-dimensional elastic problems in nonhomogeneous solid bodies. A fictitious
body force caused by a nonhomogeneous materials is used in its formulation. The
sets of fundamental solutions for this analysis were derived. The main advantages
of this method is that the use of internal cells is completely avoided. Thus, the
merit of the BEM, which is the easy preparation of data, is retained because
internal cells are not necessary. The numerical results provided for several
examples illustrate the effectiveness and accuracy of the proposed method.
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