
A Kansa-RBF method for Poisson problems in
annular domains

A. Karageorghis1 & C. S. Chen2, 3

1Department of Mathematics and Statistics, University of Cyprus, Cyprus
2School of Mathematics, Taiyuan University of Technology, China
3Department of Mathematics, University of Southern Mississippi, USA

Abstract

We employ a Kansa-radial basis function (RBF) method for Poisson boundary
value problems in annular domains. This discretization leads, for any choice
of RBF, to linear system matrices possessing block circulant structures. The
linear systems can be solved efficiently using Matrix Decomposition Algorithms
(MDAs). The feasibility of the proposed technique is illustrated by a numerical
example.
Keywords: radial basis functions, Poisson equation, fast Fourier transforms,
Kansa method.

1  Introduction

We consider the discretization of Poisson boundary value problems in annular
domains using a Kansa radial basis function (RBF) method [5], see also [3].
For any choice of RBF, for an appropriate choice of collocation points, such
discretizations lead to linear systems in which the coefficient matrices possess
block circulant structures. These systems can be solved efficiently using Matrix
Decomposition Algorithms (MDAs) [1] with Fast Fourier Transforms (FFTs).
Such MDAs have been used in the past in various applications of the Method
of Fundamental Solutions to boundary value problems in geometries possessing
radial symmetry, see e.g., [6, 7], as well as RBF approximations and their
derivatives in circular domains in [8], see also [4].
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2  The problem

We consider the Poisson equation

Δu = f in Ω, (1a)

subject to the Dirichlet boundary conditions

u = g1 on ∂Ω1, (1b)

u = g2 on ∂Ω2, (1c)

in the annulus
Ω =

{
x ∈ R

2 : �1 < |x| < �2
}
.

The boundary ∂Ω = ∂Ω1 ∪ ∂Ω2, ∂Ω1 ∩ ∂Ω2 = ∅ where

∂Ω1 =
{
x ∈ R

2 : |x| = �1
}

and ∂Ω2 =
{
x ∈ R

2 : |x| = �2
}
.

3  Kansa’s method

We define the M angles

ϑm =
2π(m− 1)

M
, m = 1, . . . ,M,

and the N radii

rn = �1 + (�2 − �1)
n− 1

N − 1
, n = 1, . . . , N.

The collocation points {(xmn, ymn)}M,N
m=1,n=1 are given from

xmn = rn cos(ϑm +
2παn

N
), ymn = rn sin(ϑm +

2παn

N
), (2)

where the parameters {αn}Nn=1 ∈ [−1/2, 1/2] correspond to rotations of the
collocation points and may be used to produce more uniform distributions.

In the current application of Kansa’s method, we take

uMN (x, y) =

M∑
m=1

N∑
n=1

amnφmn(x, y), (x, y) ∈ Ω̄, (3)

where the MN coefficients {(amn)}M,N
m=1,n=1 are unknown. The RBFs φmn(x, y)

can be expressed in the form

φmn(x, y) = Φ(rmn), where r2n = (x− xmn)
2 + (y − ymn)

2.

78  Boundary Elements and Other Mesh Reduction Methods XXXVII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 57, © 2014 WIT Press



These coefficients are determined by collocating the differential equation (1a)
and the boundary conditions (1b)-(1c) in the following way:

ΔuMN (xmn, ymn) = f(xmn, ymn), m = 1, . . . ,M, n = 2, . . . , N − 1,

uMN (xm1, ym1) = g1(xm1, ym1), m = 1, . . . ,M, (4)

uMN (xmN , ymN) = g2(xmN , ymN), m = 1, . . . ,M,

yielding a total of MN equations.
The vectorization of the arrays of unknown coefficients and collocation points

from

a(n−1)M+m = amn, x(n−1)M+m = xmn,

y(n−1)M+m = ymn, m = 1, . . . ,M, n = 1, . . . , N,

equations (4) yield an MN ×MN system of the form

Aa =

⎛
⎜⎜⎜⎜⎝

A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N

...
...

. . .
...

AN,1 AN,2 . . . AN,N

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a1

a2

...
aN

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

b1

b2
...

bN

⎞
⎟⎟⎟⎟⎠ = b . (5)

The M ×M submatrices An1,n2 , n1, n2 = 1, . . . , N are defined as follows:

(An1,n2)m1,m2
= Δφm2,n2(xm1,n1 , ym1,n1),

m1,m2 = 1, . . . ,M, n1 = 2, . . . , N − 1, n2 = 1, . . . , N,

(A1,n)m1,m2
= φm2,n(xm1,1, ym1,1), m1,m2 = 1, . . . ,M, n = 1, . . . , N,

(AN,n)m1,m2
= φm2,n(xm1,N , ym1,N ), m1,m2 = 1, . . . ,M, n = 1, . . . , N,

while the M × 1 vectors an, bn, n = 1, . . . , N are defined as

(an)m = amn, m = 1, . . . ,M, N = 1, . . . , N,

(bn)m = f(xmn, ymn), m = 1, . . . ,M, n = 2, . . . , N − 1,

(b1)m = g1(xm1, ym1), (bN )m = g2(xmN , ymN), m = 1, . . . ,M.

It can be easily shown that each of the M ×M submatrices An1,n2 , n1, n2 =
1, . . . , N in the coefficient matrix in (5) is circulant [2]. Hence matrix A in system
(5) is block circulant.
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4  Matrix decomposition algorithm

First, we define the unitary M ×M Fourier matrix

UM =
1√
M

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 ω̄ ω̄2 · · · ω̄M−1

1 ω̄2 ω̄4 · · · ω̄2(M−1)

...
...

...
...

1 ω̄M−1 ω̄2(M−1) · · · ω̄(M−1)(M−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where ω = e2πi/M , i2 = −1.
If IN is the N×N identity matrix, pre–multiplication of system (5) by IN⊗UM

yields
(IN ⊗ UM )A (IN ⊗ U∗

M ) (IN ⊗ UM )a = (IN ⊗ UM ) b

or
Ãã = b̃, (8)

where
Ã = (IN ⊗ UM )A (IN ⊗ U∗

M )

=

⎛
⎜⎜⎜⎜⎝

UMA1,1U
∗
M UMA1,2U

∗
M · · · UMA1,NU∗

M

UMA2,1U
∗
M UMA2,2U

∗
M · · · UMA2,NU∗

M
...

...
...

UMAN,1U
∗
M UMAN,2U

∗
M · · · UMAN,NU∗

M

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

D1,1 D1,2 · · · D1,N

D2,1 D2,2 · · · D2,N

...
...

...
DN,1 DN,2 · · · DN,N

⎞
⎟⎟⎟⎟⎠ , (9)

and

ã=(IN ⊗ UM )a=

⎛
⎜⎜⎜⎜⎝

UMa1

UMa2

...
UMaN

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

ã1

ã2

...
ãN

⎞
⎟⎟⎟⎟⎠ ,

f̃=(IN ⊗ UM ) b=

⎛
⎜⎜⎜⎜⎝

UMb1

UMb2
...

UMbN

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

b̃1

b̃2
...

b̃N

⎞
⎟⎟⎟⎟⎠ . (10)
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From the properties of circulant matrices [2], each of the M × M matrices
Dn1,n2 , n1, n2 = 1, · · · , N , is diagonal. If, in particular

Dn1,n2 = diag
(
Dn1,n21

, Dn1,n22
, . . . , Dn1,n2M

)

and

An1,n2 = circ
(
An1,n21

, An1,n22
. . . , An1,n2M

)
,

we have, for n1, n2 = 1, · · · , N ,

Dn1,n2m
=

M∑
k=1

An1,n2k
ω(k−1)(m−1), m = 1, · · · ,M. (11)

Since the matrix Ã consists of N2 blocks of order M , each of which is diagonal,
the solution of system (8) can be decomposed into solving the M independent
systems of order N

Em xm = ym, m = 1, · · · ,M, (12)

where

(Em)n1,n2
= Dn1,n2m

, n1, n2 = 1, · · · , N,

and

(xm)n = (ãn)m , (ym)n =
(
b̃n

)
m
, n = 1, · · · , N. (13)

Having obtained the vectors xm, m = 1, · · · ,M , we can recover the vectors
ãn, n = 1, · · · , N and, subsequently, the vector a from

a=

⎛
⎜⎜⎜⎜⎝

a1

a2

...
aN

⎞
⎟⎟⎟⎟⎠ =(IN ⊗ U∗

M ) ã=

⎛
⎜⎜⎜⎜⎝

U∗
M ã1

U∗
M ã2

...
U∗
M ãN

⎞
⎟⎟⎟⎟⎠ . (14)

Clearly, FFTs are used in the calculation of f̃ in (10) with a cost of
O(NM logM). Also, FFTs are used in the calculation of the diagonal elements in
(11) with a cost of O(N2M logM). Finally, FFTs are used in the recovery of the
coefficients a in (14) at a cost of O(NM logM). The most expensive part of the
proposed algorithm is the solution of systems (12) with a cost of O(MN3). The
FFTs are carried out using the MATLAB c© [9] commands fft and ifft.
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Figure 1: Example 1: Error versus c.

5  Numerical results

We took collocation points described by αn = (−1)n/4, n = 1, . . . , N (cf. (2)),
and calculated the maximum relative error E over MN test points defined by

rn (cosϑm, sinϑm) , where ϑm =
2π(m− 1)

M , m = 1, . . . ,M,

rn = �1 + (�2 − �1)
n− 1

N − 1
, n = 1, . . . ,N .

We chose N = 25,M = 50 so that the test points are different than the boundary
collocation points. The maximum relative error E is defined as

E =
||u− uN ||∞,∂Ω

||u||∞,∂Ω
.

As RBFs in (3) we used the multiquadric basis functions

φmn(x, y) =
√

r2mn + c2, r2mn = (x− xmn)
2 + (y − ymn)

2,

where c is the shape parameter.
We considered the Dirichlet boundary value problem (1) for the Poisson

equation corresponding to the exact solution u = ex+y. In Figure 1 we present the
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error in u for various numbers of degrees of freedom versus the shape parameter c.
As expected, the accuracy of the approximation for each set of (M,N) improves
with c up to a point and then deteriorates.

6  Conclusions

We have applied a Kansa-RBF method for the solution of Poisson boundary
value problems in annular domains. With an appropriate choice of collocation
points the discretization yields linear systems in which the coefficient matrices
are block circulant. Thus these systems may be solved efficiently using MDAs.
The major advantages of the proposed technique are its potential for solving
large-scale problems efficiently and its applicability for solving a large class
of partial differential equations. Several techniques for finding an appropriate
shape parameter may be found in the literature of RBFs. The issue of finding
a suitable shape parameter for multiquadric basis functions in the context of
circulant matrices will be considered in a future investigation. The extension of
this technique to problems governed by the inhomogeneous biharmonic equation
and the Cauchy–Navier equations of elasticity is currently under investigation.
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