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Abstract 

Analytical formulae have been derived for the effective Young modulus and 
Poisson ratio of a homogeneous isotropic continuum used for replacing the porous 
linear elastic medium involving vacant elliptic pores. A strong formulation with 
the meshless approximation of field variables has been developed for a numerical 
solution to bending problems within three theories: Kirchhoff–Love theory, 1st 
order and 3rd order Shear Deformation Plate Theory. The influence of porosity on 
bending is studied numerically and presented for a circular plate.  
Keywords:  vacant elliptic pores, effective material coefficients, plate bending, 
thin and thick plates, mesh-free strong formulation, point interpolation method. 

1 Introduction 

Many advanced materials, like ceramics contain pores which lead the Young’s 
modulus and strength to be low. Therefore a great attention is paid to prediction 
on elastic modulus of porous materials for a long time with broad scientific and 
technological importance. In general, it is difficult to analyse accurately the 
influence of pores on material coefficients, since the pores are distributed with 
random shape, size and orientation. It would be practically impossible to include 
defects of materials into numerical modelling of structures. Therefore the concept 
of replacement of defected (porous) materials by a homogeneous one with 
effective material coefficients seems to be very reasonable. Several empirical 
expressions to correlate porosity and Young’s modulus have been reported in 
literature. Such relationships often have not a significant physical meaning. 
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Intensive study has been based also on the theory of elasticity with embedding 
various defects into an elastic matrix continuum (see e.g. [1]).  
     In this paper, we shall study the influence of porosity on bending of elastic 
plates. The porosity is due to empty (“dry”) pores of either circular or elliptical 
shape. The knowledge of the stress-deformation state in case of single pore 
embedded in an infinite isotropic and homogeneous linear elastic continuum is 
utilized for analytical derivation of the effective material coefficients in the 
representative volume element (RVE) whose boundaries are sufficiently far from 
the pore. Such effective material coefficients are applicable directly only for  
non-interacting pores, so for low levels of porosity. The interaction among the 
pores can be assessed via a correction factor. The random orientation of elliptic 
holes is considered in evaluation of effective material coefficients by angular 
averaging. For defects (pores) of arbitrary shape, one can apply the numerical 
analysis of the stress-deformation state in the RVE subjected to simple tension 
with assuming the periodic distribution of the RVE. Recall that in the case of high 
levels of porosity (dense packing of pores in the RVE), the numerical calculations 
fail because of inappropriate interactions of pores with fictitious boundaries of the 
RVE. Nevertheless, the numerical results for single pores are applicable also for 
higher densities of pores in combination with the correction factor.  
     Having known the effective material coefficients in the porous media, we 
studied the dependence of deflections, bending moments and shear forces in plates 
within the classical Kirchhoff–Love theory for bending of thin elastic plates as 
well as within the shear deformation plate theory valid also for thick plates. The 
strong formulation for solution of boundary value problems is employed with 
using meshless approximations for field variables. The high order derivatives in 
the governing equations are eliminated by using a decomposition technique. 

2 Effective elastic material coefficients 

Let us consider a linear elastic material with one pore under remote stress ij  . 

The average strains in the domain   of a sample are given as 

 , ,

1

2
ij i j j iu u d



  


.                                     (1) 

In view of the Gauss divergence theorem, Eq. (1) can be rewritten as 

         0
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where  is the outer boundary of the domain  , while  is the boundary of the 

pore. Then, 0
ij is the strain tensor in the sample without any pore, while ij is 

the disturbance strain due to the pore in the sample far from the pore. The same 
formula for ij has been employed also by Wang et al. [2]. Since the medium is 

linear elastic, both the strains 0
ij  and ij must be linear functions of applied 

stress 
 

 0
ij ijkl klM     ,     ij ijkl klH    ,                               (3) 

 
where the tensor of compliance coefficients ijklM is well known for homogeneous 

isotropic elastic media, while ijklH should be determined. In view of Eqs. (2) and 

(3), we obtain 
 

 ij ijkl klM    ,     ijkl ijkl ijklM M H  ,                       (4) 

 
with ijklM  being the effective compliance tensor.  

2.1 Elliptical pore  

Let us consider a small elliptical hole in a finite size sample loaded on its 
boundary. The displacements in such a homogeneous and linear elastic sample 
with the hole can be assessed by the displacements in infinite elastic plane.   
 
 

 

Figure 1: Elliptical hole in infinite plane with applied uniform stress loading 
in infinity. 
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     The deformation state in such a plane problem is usually solved via Airy stress 
function U , which can be found using functions of complex variable [3–5] and 
conform mapping of the plane with elliptical hole into the plane with unit circular 
hole. Without going into details, we present the displacements on the contour of 
the elliptic hole given as 
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where ( ) / 2R a b  ,  0 ( ) / ( ) 1m a b a b     .  

     In order to get the disturbance strains in the considered infinite plane, according 
to Eq. (2) we need to integrate along the elliptical hole. Performing such 
integrations, we obtained  
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     Since 2 3B B , the porous material with fixed orientation of the elliptic hole is 

not orthotropic. Let us consider the material with unspecified orientation of the 

elliptic hole. Then, we should consider angularly averaged values  H  instead 

of material coefficients  H obtained for a fixed orientation, with the angular 

averaging being defined as 
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     After angular averaging, the effective medium is homogeneous isotropic and 
linear elastic continuum with the effective Young modulus and Poisson ratio being 
given by 
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 for plane stress formulation,  (8) 

 

while for plane strain formulation, we have 
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     In order to get the effective Young modulus for the case with interacting pores, 
it has been shown [2] that these can be found from those for the single pore by 
using certain correction factor as 

 

(1 )effE p E  .                                               (10) 
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3 Shear deformation plate theory (SDPT) and  
Kirchhoff–Love theory (KLT) 

Let us consider a straight plate structure occupying the 3D domain  
 

3
1 2 3 1 2 3{ ( , , ) ; ( , ) , [ /2, /2]} [ / 2, /2]V x x x x x x h h h hx= " Î = ÎW Î - =W´ -

 
     In order to unify the formulation for three theories, KLT, 1st order SDPT 

(FSDPT) and 3rd order SDPT (TSDPT), we can write the displacements as  
 

  3 1 3 3 , 1 3 3( , ) ( ) ( ) ( ) ( ) ( ) ( )i i iv x u c x x w c x w           x x x x x ,  (11) 

 

where ( )u x , ( )w x and ( ) x stand for in-plane displacement, deflection and 

rotation fields, respectively, while 3 3 2 3( ) : ( )x x c x   , 3 2
3 3( ) : 4( ) / 3x x h  . 

The keys 1c and 2c  switch among the considered theories according to the choices 

 

                             1
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



 ,     2
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c 





 . 

 

Making use the principle of virtual work, one can derive the governing equations 
 

, 0T    

 

 ,1 1 3 , qM c M c T
                                       (12) 

 

 1 , 3 0c M T      , 

 

where ( )T x  are the averaged in-plane stresses, ( )M x , ( )S x are averaged 

stress couples, 3 ( )T  x , 3 ( )Q  x  are averaged transverse shear stresses and 

: 2M M c S    ,  :3 3 2 3T T c Q    .  
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     It is appropriate to use dimensionless formulation specified as follows 
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being the bending stiffness. Then, the governing equations 

become 
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     Note that there is no coupling between bending and the in-plane deformations 
provided that the Young modulus is not graded along the plate thickness. In what 
follows, we shall be interested only in the bending problems and rewrite the 
governing equations in terms of the primary fields ( )w x and ( ) x .  

 
KLT: 
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TSDPT:  
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h                                    (16) 
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, , ,17 (1 ) (1 ) 13 168(1 ) 0
h L L

f m w
L h h                          

 

 
2 0w m    ,      2 0f      

 

     The new field variables m and f
 have been introduced in order to decrease 

the order of the derivatives of the primary field variables [6]. Now, the maximum 
order of the derivatives is equal to 2 instead of 4 occurring in the formulation 
without decomposition. This is important from the point of view of accuracy of 
derivatives of approximated field variables, especially in case of strong 
formulations.  
     In numerical solution, we apply the strong formulation with meshless 
approximation for field variables by Point Interpolation Method (PIM) using the 
radial bases functions (multiquadrics) and polynomials [6, 7]. The governing 
equations are collocated at interior nodes while the boundary conditions at nodes 
on the boundary contour.     

4 Numerical examples 

Since the porous medium is assumed to be replaced by a homogeneous, isotropic 
and linear elastic continuum with an effective Young modulus and Poisson ratio, 
the plate bending problems for such porous plates looks rather simply. For 
illustration, we present numerical results for circular plate with a central circular 
hole, for which the exact solution is also available within the KLT [6]. We present 
the numerical results for the parametric study of the deflection, slope, bending 
moment and generalized shear force in thin as well as thick plates for several 
values of the porosity [0, 0.6]p .  The uniform transversal loading is assumed 

4
0 1/ ( )q D h r and keeping constant for each calculation with different values of 

the porosity. The inner and outer radii are also kept constant, 1 1r  and 0 10.1r r   

in dimensionless coordinates and both the edges are clamped. Then, the 

dimensionless loading 0 /q D D   is dependent on the porosity. Because of the 

angular symmetry, the nodal points are distributed only along the radius of the 
plate and the presented results have been obtained by using a uniform distribution 
of 121 nodes. Good convergence of accuracy is achieved with increasing the 

amount of nodes and the 2L -norm error for deflections is less than 36 10  % 

when 121 nodes is employed.  
     Fig. 2 shows the dependence of the effective Young modulus and Poisson ratio 
on the porosity with considering two shapes of pores. The influence of the shape 
of pores on effE is negligible, while it is significant on the effective Poisson ratio. 
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Figure 2: The effective Young modulus and Poisson ratio vs porosity for 
circular pores ( / 1a b  ) and elliptic pores ( / 2a b  ). 

     From Fig. 3, we can see a strong influence of the porosity on the investigated 
quantities.  
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     The dimensionless numerical results shown in Fig. 3 are obtained by the KLT 
and they do not depend on the ratio 1 /r h . Having used 1 50r h , the numerical 

results by the FSDPT as well as by the TSDPT are practically the same as those 
by the KLT. The differences between the KLT and SDPT results for various values 
of the ratio 1 /r h can be seen from Fig. 4.  

 

 

Figure 4: Comparison of numerically computed deflections by the KLT and 
SDPT for two values of the ratio 1 /r h  in plate without porosity. 

     The influence of the shape of pores on deflections can be seen from Fig. 5. 

 

 

Figure 5: Comparison of deflections in porous plates with two shapes of pores. 
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     It can be seen from Fig. 6 that the dependence of the maximal deflections on 
the porosity is nonlinear. The bending of the porous plate is affected by the 
porosity via both the Young modulus and the Poisson number. Furthermore, it is 
seen that the dependence is more expressive for thick plate. For thin plate 
( 1 50r h ) all three theories give almost the same results, for the medium 

thickness ( 1 10r h ) there is coincidence only between the FSDPT and the 

TSDPT, and finally for the thick plate ( 1 5r h ) a deviation can be seen even 

between the FSDPT and the TSDPT results. The differences between the results 
by various theories are increasing with increasing the porosity.   

 

 

Figure 6: Dependence of maximal deflections on the porosity. 

5 Conclusions 

The analytical formulae have been derived for the dependence of Young’s 
modulus and Poisson’s number on the porosity for the effective homogeneous 
linear elastic continuum used for replacing the porous medium involving randomly 
oriented elliptic empty pores. The shape of pores has more significant influence 
on the effective Poisson ratio than on the effective Young modulus. The influence 
of porosity on bending of elastic plates has been studied in three theories: KLT, 
FSDPT and TSDPT followed by a discussion of the results.  
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