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Abstract

Integrated volumetric methods such as finite elements and their “meshless”
variations are typically smoother than the strong form finite difference and
radial basis function collocation methods. Numerical methods decrease their
convergence rates with successively higher orders of differentiation along with
improved conditioning. In contrast, increasing order of integration increases the
convergence rate at the expense of poorer conditioning. In the study presented, a
two-dimensional Poisson equation with exponential dependency is solved. The
solution of the point collocation problem becomes the initial estimate for an
integrated volumetric minimization process. Global, rather than local integration,
is used since there is no need to construct any meshes for integration as done in
the “meshless” finite element analogs. The root mean square (RMS) errors are
compared. By pushing the shape parameter to very large values, using extended
precision, the RMS errors show that spatial refinement benefits are relatively small
compared to pushing shape parameters to increasing larger values. The improved
Greedy Algorithm was used to optimize the set of data and evaluation centers for
various shape parameters. Finally, extended arithmetic precision is used to push
the range of the shape parameters.
Keywords: meshless radial basis functions, multiquadric, strong and weak
formulation, partial differential equations, global minimization.

1 Introduction

The objective is to find efficient methods for the numerical solution of partial
differential equations (PDEs), integral equations (IEs), and integro-differential
equations (IDEs). Assume that a dependent variable, U(−→x , t) is an unknown
piece-wise continuous function. Over the interior, let L, be a linear or nonlinear
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hyperbolic, elliptic, or elliptic differential operator with the associated forcing
function, f(−→x , t). Let ℘ be well-posed boundary operators, and let g(−→x , t) be
the associated forcing boundary condition. The set of well-posed interior and
boundary conditions are:

LU = f, over Ω\∂Ω, (1)

℘U = g, on ∂Ω, (2)

The finite element method (FEM) uses trial polynomial-based discretization
method in which the interior operator, L, and boundary operator, ℘, are locally
integrated and multiplied by a test function. One appealing aspect of FEM is the
fact that integration increases the convergence rate and Gauss theorem:∫

V
(∇ · −→A)dV =

∫
S

(
−→
A · −→n )dS (3)

reduces orders of differentiation. Local integration requires connectivity rules over
different polyhedra and the integration schemes are defined over either Voronoi or
Delaunay tessellations, requiring overhead. The dependent variables may not be
continuous, but multi-valued at a center. Even though the low order polynomial
basis functions are integrated, FEM still has only polynomial convergence, rather
than the exponential convergence of C∞ radial basis functions.

The test problem is the Poisson equation over a unit 2D square:

∇2U(x1,x2) = (a2+b2)exp(ax1+bx2) over Ω, (4)

with the following Dirichelet conditions on

U(x1 = 0, x2) = exp(ax1) on ∂Ω(x2 = 0)

U(x1, x2) = exp(bx2) on ∂Ω( x1 = 0), (5)

and Neumann conditions on the opposite boundaries:

∂U/∂x1 = a · exp(ax1+b) on ∂Ω(x2 = 1)

∂U/∂x2 = b · exp(a+bx2) on ∂Ω(x1 = 1). (6)

The exact solution is:

U(x1,x2),= exp(ax1+bx2). (7)

In Kansa [1], any dependent variable, U(−→x ,t) is expanded in terms of the N
radial basis functions, φj , and Np polynomial terms, pk(−→x ), in terms of N+Np
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expansion coefficients, αj .

U(−→x ,t) =
N∑

j=1

φj(
−→x )αj(t) +

N+Np∑
j=N+1

pj(
−→x )αj(t) (8)

subject to the constraint conditions

N∑
j=1

pk
−→
(x)αj(t) =0, k = N+1, · · ·N+Np. (9)

The approximate function, U(−→x ,t), is expanded in terms of C∞ radial basis
functions (RBFs) as

φj = (1 + (rj/cj)
2)β , (generalized MQ), rj = ‖−→x -−→yj ‖, (10)

where cj is the local shape parameter, β ≥ −1/2,{−→y } is the set of data centers,
and {−→x } is the set of evaluation points; {−→x } and {−→y } can be distinct or the
same. Note that c2

j plays the roles of a wavelet dilation parameter. Madych [2]
has provided theoretical guidance for optimizing the interpolation procedure. They
showed that C∞ radial basis functions, such as MQ, converge exponentially as:

convergence rate ∼ O(λγ),whereγ = (c/h), and 0 < λ < 1, h is the fill distance.
(11)

Madych also showed differentiation reduces the rate of convergence; however, if
the parameter, γ, is rather large, the derivatives can be very good approximates.
It does not make sense, on a CPU count, to use uniform very fine discretization
over the entire domain, Ω, unless the length scale is small everywhere. Some
insight of the location of fine length scales can be gained from the effect of the
source functions, f(−→x ,t) and g(−→x ,t). The set of adjustable parameters, textQ =
{−→x ,−→y , textc2j ,

−→α } determine how well the MQ expansion approximates the
true solution. The usual procedure in solving PDEs, IEs, and IDEs is to choose
either a shape parameter or a distribution, {c2

j}, a set of data centers, {−→y } and
evaluation points, {−→x }, then find a set of expansion coefficients by solving a
set of N×N coupled linear or nonlinear equations. The process of finding the
expansion coefficients, {−→α }, is unfortunately not always stable; furthermore, the
set, {−→α }, depends upon the choices of subset, {−→x ,−→y , c2

j}. Using either a very fine
discretization everywhere in the domain may have a firm theoretical foundation,
and likewise for using very large shape parameters, but both lead to ill-conditioning
problem on finite precision computers, no matter how many digits of accuracy
are available. On real world computers, compromises must be made to obtain the
objective of the most accurate results in the most efficient manner possible.

The search for the optimal method to solve PDEs, IEs, and IDEs is evolving.
Given a double precision computer and a choice of a shape parameter, the Greedy
Algorithm developed by Ling and Schaback [3] finds the optimal set of data and
evaluation centers from a very large initial sample of such centers. Huang et al.
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[4] and Cheng [5] demonstrated that when using extended precision arithmetic, a
very coarse distribution of data and evaluation centers coupled with large shape
parameters yields extremely accurate numerical solutions very computationally
efficiently. Intuitively, this seems wrong because the CPU time for multiple
precision is much longer than for double precision. The reason why intuition is
incorrect is that although the CPU time per data and evaluation center is larger
with extended precision, the very fact that the total number of points for specific
target accuracy is orders of magnitude smaller, hence the total cost is considerably
reduced.

A general unifying approach is presented by Galperin and Zheng [6, 7] to solve
PDEs, IEs, and IDEs as a global minimization problem in which the interior
operator, acting upon the C∞ RBFs is volume integrated over Ω\∂Ω and the
boundary operator, ℘, acting upon the C∞ RBFs is surface integrated over each
∂Ωk. The functional, F , to be minimized, over the parameter set Q is:

min
q∈Q
F = $

∫
Ω\∂Ω

(LU-f)d−→x +(1−$)

∫
∂Ω

(℘U-g)d−→x ≤ η (12)

where Q is the set of free parameters, Q = {−→x ,−→y , c2
j , α}, $ < 1 and η

is a prescribed error criterion. The integrations performed were global, rather
than using local tesselation methods. Only the integrated basis functions at the
integration endpoints are required. For example, define ψ(y) to be:

ψ(−→y j) =

∫
Ω\∂Ω

φ(−→x -−→y j)d
−→x (13)

and similarly over the boundaries, ∂Ωk. Then, the integral,
∫

Ω\∂Ω
(LU-f)

−→
dx,

expanded as:∫
Ω\∂Ω

(LU-f)d−→x =
∑∫

Ω\∂Ω

(Lφ(−→x -−→y j)d
−→x )αj -

∫
Ω\∂Ω

fd−→x (14)

If one wishes to have a finite element analog, then local integration over the
tesselation can yield N equations in N unknowns.

Although the Galperin and Zheng procedure eliminates the need to solve sets
of linear or nonlinear equations, global minimization requires a huge number of
evaluations of the functional, F . Fast reliable global minimization algorithms
capable of dealing with at least 4N parameters are not perfected. One way
to minimize the number of functional evaluations is reduce the total number
of free parameters. The problem is that the set of optimal shape parameters,
data and evaluation centers, and expansion coefficients are inter-related. The
usual procedure is to choose a set of N {−→x } and {−→y } and either a shape
parameter or a distribution of shape parameters, then solve an N×N set of
equations to find the expansion coefficients. To overcome the limitations of double
precision, the MATLAB compatible multi-precision package was obtained from
www.advanpix.com.
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To improve the convergence rate, we want γ to become very large; this can be
accomplished in two ways: (1) The h-scheme (spatial refinement) increases the
number, Nh, of data centers, but a relatively small c. (2) The c-scheme increases
c, but requires a significantly smaller of data centers, Nc, where Nc � Nh; the
c-scheme requires O(N3

c) � O(N3
h) operations. For purposes of efficiency, the c-

scheme is superior and preferable over the h-scheme. The disadvantage of either
the h-scheme,or the c-scheme is that as γ → ∞, the system of linear equations
becomes very ill-conditioned and subject to extreme round-off errors on computers
with limited arithmetic precision.

2 Numerical results

The test problem was chosen over a unit square domain, and the exponential
parameters for the forcing function, f, were a = 2 and b = 2, respectively. At
x1 = x2 = 1, U = exp(5) = 148.4132. To minimize the number of data centers,
a geometric progression of increasingly finer discretization was used, and the
origin was appended in the construction of the tensor product mesh. Although
many computer experiments were made, the best input parameters will be
summarized here. In the paper of Fedoseyev et al. [8], the computational domain,
Ω was extended slightly beyond the boundaries, ∂Ωk given by the line segments
of the unit square: (0,1) (0,0), (0,1) (1,1) (0,1), The domain extended 0.020
beyond the unit square in the x1 and x2 directions. The parameters on the
boundaries, see Wertz et al. [9], were increased by a factor of 30. Consequently,
numerical integration such as Gauss–Legendre (GL) needs to be performed, by
first interpolating this integrand onto the appropriate GL zeros. then perform the
numerical integrations.

The shape parameters distribution is a power law two parameter recipe for N
terms:

c2j = c2
min(c2

max/c2
min)(j-1)/N-1) (15)

While the power law recipe seems to work for monotonic functions, the wavelet
relations. From previous experiments and 440 digits of accuracy, c2

min = 1.6e5 and
c2

max = 1.6e0. It is seriously doubtful that such a simple two parameter recipe is
general, and this be the subject of more study. The order of the GL integration was
25 and the points and weights were generated with extended precision arithmetic.
Since most scientists and engineers are familiar with finite difference, element,
or volume methods, the customary procedure is to use the brute force of the
computer and use extremely fine meshing. This approach is fine for 2 and 3-
dimensional problems, but impractical for 6D Boltzmann equations. Since the
maximum value of U occurs at x1 = x2 = 1, the geometric progression algorithm
produced successively finer discretization in the x1 and x2 directions. The first
point was fixed at 0.16 for x1 and 0.18 for x2. Afterwards, the minimum values
of x1 and x2 was -0.02 and the maximum values of x1 and x2 was 1.025 were
appended to the tensor product 2D mesh. The boundary locus line segments: (0,0),
(0,1), (1,1), (1,0) were also added.
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Table 1: RMS errors of the Galperin–Zhang formulation using Gauss–Legendre
(GL) and exact integration.

N data centers RMS error-GL integration RMS error-exact integration

12 0.0723 0.0016

30 0.0636 0.0014

42 0.0586 0.0012

56 0.0554 0.0010

72 0.0539 0.0009

90 0.0526 0.0008

110 0.0512 0.0007

240 0.0386 0.0005

The set of expansion coefficients, {α}, was obtained by solving the point
collocation for the PDE and boundary conditions. The root mean square (RMS)
errors of these expansion coefficients relative to the exact solution ranged from
1e-34 to 3e-38 with the total number of points ranging from 12 to 240. To
answer the question whether the weak formulation yields accurate results, the 2D
integration of the ∇2 was integrated using the Gauss theorem for both Gauss–
Legendre integration and exact integration; likewise, the boundary conditions were
integrated exactly over one dimension.

The following table shows the results of increasing the number data centers
for the Galperin–Zhang weak formulation using GL integration and exact 2D
integration. During previous testing, and using an increasing number of digits of
precision, the values of c2

min and c2
max were pushed., fixing the set, {c2

j}, using the
set {α} from the solution of the point collocation scheme, and fixing the starting
points of the geometric progression for the tensor product meshes.

Note that increasing the number of data centers, h-refinement, while fixing
the set, {c2

j} does show successively smaller RMS errors, but it is questionable
whether the extra effort is warranted. The point of this exercise is to provide a good
starting point for the global optimization process in which all free parameters are
varied to find very deep global minima instead of a local minimum.

3 Discussion

The papers of Galperin and Zheng [6, 7] offer a general framework for the
numerical solution of PDEs, IEs, and IDEs. The test solutions are expanded in
terms of C RBFs, then operated upon by the domain and boundary operators
that are volume and surface integrated, respectively. A functional is constructed
from these test expansions that is constrained to be less than or equal to
an error bound. The functional is minimized by global optimization methods
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that are unfortunately not very robust given a large number of parameters.
Presently, a decoupling process is required in which the set of data and evaluation
centers are input parameters as well as either a uniform or variable shape
parameter distribution, then the expansion coefficients are solved as a set of
possible ill-conditioned equation systems requiring extended arithmetic precision.
Unless some breakthrough in the global minimization algorithm is developed,
parameter splitting methods will need to be continued to be used. Optimizing the
minimization procedure will require further research and development.
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