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Abstract 

In this paper we present a fluid–structure interaction analysis of shell structures 
with compartments partially filled with a liquid. The compound shell was  
a simplified model of a fuel tank. The shell is considered to be thin and  
Kirghoff–Lave linear theory hypotheses are applied. The liquid is ideal  
and incompressible. Its properties and the filling levels may be different in each 
compartment. The coupled problem is solved using a coupled BEM and FEM  
in-house solver. The tank structure is modelled by FEM and the liquid sloshing in 
fluid domain is described by BEM. The method relies on determining the fluid 
pressure from the system of singular integral equations. For its numerical solution 
the boundary element method was applied. The boundary of the liquid 
computational domain is discretized by nine-node boundary elements. The 
quadratic interpolation of functions and linear interpolation of flux are involved. 
The natural frequencies were obtained for the cylindrical double tank with two 
compartments. 
Keywords: fluid–structure interaction, baffles, free vibrations, boundary and finite 
element methods. 

1 Introduction 

Different engineering fields such as the aerospace and chemical industry, power 
machine building, wind power engineering and transport extensively use thin-wall 
structural elements operated under excess process loads. In many circumstances 
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these shells and shell structures are subjected not only to static loads but also to 
dynamic disturbances and filled with internal fluid. The influences of both shell 
and fluid on each other must not be neglected in stress-strength analysis of these 
structural elements. So the interaction between the sloshing liquid and the shell 
structure has been the challenging field of research in many engineering 
applications. 
     Liquid sloshing is an interesting physical phenomenon of enormous practical 
interest that has far reaching applications in a wide field of technologies and 
engineering disciplines. It occurs in moving tanks with contained liquid masses 
such as rocket tanks, marine and space vehicles as well as in seismically excited 
storage tanks, dams, reactors, and nuclear vessels [1].  
     Many different types of model tests at different scales and with different 
objectives were proposed and performed in the last few years in this research area. 
     Since the launch of the early high-efficiency rockets in 1957, controlling liquid 
fuel slosh within a launch vehicle has been a major design concern. Moreover, 
with today’s large and complex spacecraft, a substantial mass of fuel is necessary 
to place them into orbit and to perform orbital maneuvers. The mass of fuel 
contained in the tanks of a geosynchronous satellite amounts to approximately 
40% of its total mass [2]. When the fuel tanks are only partially filled, large 
quantities of fuel move inside the tanks under translational and rotational 
accelerations and generate the fuel slosh dynamics. Slosh control of propellant is 
a significant challenge to spacecraft stability. Mission failure has been attributed 
to slosh-induced instabilities in several cases [3, 4].  
     As the propellant level decreases throughout a mission, the effects of sloshing 
forces on the remaining fuel become more prominent. When the tank is full or 
nearly so, the fuel lacks the open space to slosh. However in the latter stages of 
the mission, when most of the fuel has been consumed, the fuel has sufficient 
volume to slosh and possibly disturb the flight trajectory. This sloshing can 
ultimately lead to wobble in a spinning spacecraft and self-amplifying oscillations 
that can result in failure of individual instruments or failure of the entire structure. 
The dynamics of a fluid that interacts with the walls of its container are 
complicated and challenging to predict. The effects of sloshing on bodies in 
motion are significant and in some cases devastating. These effects remain 
prominent even when the propellant volume represents only 0.3% of the total 
spacecraft mass [5]. 
     In order to suppress sloshing a variety of methods have been proposed, 
simulated and tested. The effects of baffle on sloshing frequency have been studied 
in [6]. The mathematical technique used here is based on the velocity potential 
function; the problem was solved using finite-element analysis.  
     The motion of liquid within a partially filled tank in [7] was investigated by 
representing the fluid slosh through an equivalent mechanical system using a 
pendulum analogy model. The model parameters were computed based on inviscid 
fluid flow conditions and the dynamic fluid slosh forces arising due to the 
dynamics of the vehicle during a given maneuver were computed using  
the equivalent mechanical system. 
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     Liquid sloshing in partially filled horizontal cylindrical tanks with circular 
cross sections is a common problem in the road transportation industry that has 
been extensively studied for many years [8–10]. A recent review on liquid sloshing 
in horizontal cylindrical tanks was accomplished in [11].  
     In order to restrain the fluid sloshing motion a common technique is to place 
additional sub-structures called baffles or separators within the tank [8].   
     So we have the problem of sloshing in so-called double tanks or tanks with the 
compartments. 
     The issue of suppression of sloshing behavior using baffles goes back to late 
50s when lots of experimental and theoretical studies were concerned with the 
effect of baffles on the sloshing in fuel containers of space vehicles [12, 13].   
     Since then, numerous authors have tackled the subject. Strandberg in [8] 
performed an experimental investigation on dynamic performance and stability of 
horizontal circular tank. He also studied the overturning limit for half-full elliptical 
containers with various baffle configurations and concluded that the vertical  
baffle must be preferred in comparison with the un-baffled or horizontally baffled 
elliptical container. In [14] authors used the method of eigenfunction series to 
explore the effect of a thin vertical baffle in a fluid-filled rectangular tank on fluid 
frequencies. In [15] this technique was subsequently extended on circular 
containers having internal baffles. In [16] a mathematical model was developed 
for the ship rolling motion with free surface liquids on board; numerical and 
experimental results for a rectangular tank with a vertical bottom-mounted internal 
baffle were presented. In [17] the authors used the FLUENT software to develop 
a three-dimensional nonlinear model of a partly-filled cylindrical tank with and 
without baffles to investigate the significance of resulting destabilizing forces  
and moments. The main objective in [2] was to analyze multi-excitation effects on 
a cylinder divided by plate on two compartment on the base pf BEM and FEM 
numerical analysis. Diverse multi-exciting forces were applied on this base plate 
with different frequencies whereas, independently calculated results were 
superimposed to provide consolidated result. 
     The above review clearly indicates that there exists a massive body of literature 
on liquid sloshing in rectangular or upright cylindrical containers with various 
baffle configurations. With respect to all the numerical work which has been done, 
it is fair to say that there is still no fully efficient numerical method to deal with 
the sloshing in fluid–structure interactions in two-compartment tanks. Indeed it 
appears that, from computational point of view, it is impossible to account for all 
the different physical effects at the same time. 
     In this work we proposed the method of fluid–structure interaction analysis for 
tanks with compartments partially filled with liquids that allows us to include 
elasticity of shell walls, different liquid properties in each compartment, gravity 
force and to estimate influence of these factors on frequencies of tank vibration. 

2 Problem statement 

Let us consider the coupled problem for shell structure with two compartments 
partially filled with the liquid (Fig. 1). In this study we consider the cylindrical 
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shell with bottom and baffle. The contained liquid is assumed to be inviscid and 
incompressible. We suppose that liquid properties and filling levels may be 
different in each compartment. 
 

      

Figure 1: Fluid-filled double tank. 

     Suppose that the flow induced by vibrations of the shell is irrotational and 
consider small shell and fluid vibrations. Let U is the vector-function of the shell 
displacements. A system of governing equations of motion of elastic shell with the 
liquid in the operator form is given by  

lP LU MU                                               (1) 

where L, М are operators of elastic and mass forces of the shell; U =  (u1, u2, w) is 
the displacement vector, Pl is the liquid pressure.  
     Hereinafter we denote  the  surface  of  an  empty  tank  as  S .  To  define  the  pressure  on  
the wetted parts of the tank we need the velocities of liquid level changing in each 
compartment. Let these velocities will be V1(t) and V2(t) respectively in first and 
second compartments. The domains occupied with liquid we denote as 1 и 2 

for first and second compartments. The liquid densities will be 1 and 2 
respectively. Filling levels in compartments will be denoted as h1 and h2. It would 
be noted that velocity potential function  is satisfied to Laplace equation. The 
components of dynamical pressure on tank walls in compartments are defined as  
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     For velocity potential  we obtain the mixed boundary value problem for 
Laplace equation in double domain 1  2. Hereinafter we denote the normal 
displacement component of tank structure as w.  
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     Then the kinematical boundary condition of the continuous fluid motion on the 
wetted shell surface S can be represented as follows:  
 

t

w

n 




 , 

 
where n is an external unit normal to wetted surface. 
     Let functions  zyxt ,,,1  and  zyxt ,,,2 describe the shapes and positions of 
free surfaces. These surfaces are denoted as S10, S20 in Fig. 1. On free surfaces the 
following formulae for pressure components are valid 
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Here g – the gravity acceleration. 
     To determine the function  the following boundary value problem in the 
double domain 1  2 is formulated with free-surface boundary conditions 
(kinematical and dynamical) and non-penetration condition on wetted parts: 
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     So it is necessary to solve equations (1) and (2) simultaneously including the 
boundary condition for shell structure and using the next presentation for the liquid 
pressure on tank walls: 
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3 Mode superposition method 

We will seek the natural modes of vibration for double tank interacting with the 
fluid in the form 
 

1

N

k k
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 u u .     (3) 
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Here functions ( , , )k x y zu are natural vibration modes of the empty tank, ( )kc t

are unknown factors. The own modes of an empty tank are defined on the 
cylindrical part of shell structure, its bottom and baffle. 
     We will seek the function 1 as a sum of two potentials 1 2    . To 
determine 1 we use the series 
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Here factors )(tck  were defined in (3). To determine 1k we have the following 
boundary value problems: 
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It follows from (4) that the problem for double domain is reduced to boundary 
value problems for two single domains 
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Here 21 SSS  ; 21, SS  are wetted parts of double tank surface. 
     Then for potential 1 we obtain the next representation: 
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     Before determining the function 2 let us consider the auxiliary problems for 
two fluid-filled compartments. 
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Considering harmonic vibrations and omitting indexes, we supposed i te   . 
So we have the eigenvalue problems in each compartment. Let denote as 

1 1 2 2
2 2, , ,k k k k     the modes and frequencies for first and second compartment 

respectively. The following relations are valid on free surfaces of compartment: 
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Then the potential 2 will be represented in the form 
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Accordingly, functions   zyxt ,,,1  and  zyxt ,,,2  can be written as 
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The velocity potential  took the form 
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To determine the pressure we have the next relationship: 
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Using these relations for , pl,  1 , , ,t x y z and  2 , , ,t x y z , substituting them 
into eqns (1) and (2), and performing dot products we have obtained the following 
system of ordinary differential equations   
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Here  
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At first we consider the problem without including the liquid level changing, i.e. 
supposing  tV1  =  tV2  = 0.  
     We will seek the solution of system (6) in the form 
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Then we obtain the next eigenvalue problem to define frequencies  and modes 

 Tkkk DBCX ,, : 
 

  02  XGM  
 

where  
 















 


E

E

BBPE

M

00
00

2
2

1
22

;     














 


2
2

1
1

0
0
00

HgG

HgGG ; 

  NjMk
n

ggG i
ij

i
j

i
ki

kj
i
kj

i ,1;,1;,; 21 

















  

    i
i
j

ii
jk

i
jk

i MkNjbbB
k

,...,1;,..,1;,;
2

 u  
 
Here , H1, H2 are diagonal matrixes with squares of frequencies as diagonal 
elements for free vibrations of empty tank, liquid sloshing in first and second tank 
compartments accordingly. 
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4 BEM solution of velocity potential 1 

The velocity potential 1k for the k-th eigen – frequency of tank oscillation – is 
governed by the Laplace equation  
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2  k                                                      (7) 

 
with boundary conditions (4) where the wall normal displacement is zuw   on 
the bottom and ruw  on the cylindrical part of tank shell structure in cylindrical 
coordinate system.  
     In the framework of boundary element method the eqn (7) may be rewritten 
into following integral form in the following way [18] 
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

, (8) 

 
where 0M  is the source or collocation point, n

 is a unit normal to the boundary, 
pointed out of the domain and *u  is the fundamental Laplace solution

  1*
04u M M


   ;  0c M  is the geometrical factor defined as

 0 / 4c M   , where  is an inner angle with origin in collocation point M0. 
     The boundary of the computational domain is discretized by boundary elements

b
b

   . Each boundary element consists of 9 nodes for quadratic interpolation 

of functions and 4 nodes for linear interpolation of flux. Velocity potential is 
interpolated over the boundary elements as 1 ,k i k iL  . Flux is interpolated over 

the boundary elements as ,k i k iq L q  , using discontinuous linear interpolation 
scheme, avoiding the definition problem in corner points. By applying the 
described interpolation the following form of eqn (8) can be written as: 
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with i denoting the node number. After the following integral are calculated, 
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the eqn (8) is transformed into the matrix form 
 

         kkk qGHMMc  1010 .                               (9) 
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     The square brackets in eqn (9) denote integral matrixes and each source point 
yields one row in these matrixes. Gaussian quadrature algorithm was used for 
calculation the integrals, which were evaluated in local coordinate system. A 
weighted summation of up to 48 integration points on each coordinate axis was 
used. Free coefficient  0c M  is calculated indirectly. Rigid body movement 

1, 0q    is considered and thus the sum of all [H] matrix elements for each 
source point is zero. This fact is considered in  0c M  calculations and these 
values are added to the diagonal terms of the [H] matrix. After application of 
boundary conditions the system nay be solved for unknown boundary values of 
velocity potential or its normal derivative. The method is based on BEM and used 
the fluid flow solver developed by Ravnik et al. [19]. 
 

5 Numerical results 

Let us consider the double tank with compartments partially filled with the fluid. 
The geometry of the tank is shown in Figure 1 and the parameters are following: 
the radius is R = 1.5 m, the thickness is h = 0.01 m, the length L = 6 m, Young’s 
modulus E = 2·105 MPa, Poisson’s ratio ν = 0.3, the material’s density is  = 7800 
kg/m3, the fluid density in both compartments 1 = 2 =1000 kg/m3. The filling 
level of the fluid is denoted as h (Fig. 1). It is equal in both compartment, its value 
h = 1.5 m. Boundary conditions are following: 0r zu u u   to z = 0 and r = R. 
     The modes and frequencies of empty shell were obtained using FEM as it was 
described in [20]. The axisymmetric form was under consideration. The number 
of natural modes was equal to 20. Here we used 20 elements along bottom and 
baffle and 20 elements along cylindrical part. Functions 1k were calculated by 
method developed in [19] and based on BEM. The simulation of top and bottom 
compartments was done separately. Boundary conditions were obtained by 
interpolation of structural analysis. The computational mesh (Fig. 1) had 3584 
elements with 14338 function nodes and 14336 flux nodes. 
The functions and frequencies 1 1 2 2

2 2, , ,k k k k     of liquid vibration for this tank were 
calculated analytically and can be represented in the form 
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for both departments. The numbers of own liquid modes were 1 2 20M M   for 
both compartments. Fig 2 demonstrates modes of liquid vibration corresponding 
to 1st, 2nd, 8th and 10th modes of the liquid in the double tank. The results were 
obtained by method [19]. 
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   Mode 1     Mode 2 
 

   
  Mode 8     Mode 10 

Figure 2: Modes of vibrations of double tank. 

 
     Table 1 provides the numerical values of the natural frequencies of vibration 
for an empty and fluid-filled double tank. Here coefficients C1, C2, B1, B2 indicate 
the mode of vibration. Coefficients C1, C2  are regarded to shell walls vibrations in 
first and second compartments, and coefficients B1, B2 corresponds to modes of 
liquid sloshing in first and second compartments accordingly. 
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Table 1:  Frequencies of the double tank vibrations. 

n C1 C2 B1 B2 Empty tank Fluid-filled tank 
1 0.01 0.00 0.97 0.00  5.00103 
2 0.00 0.01 0.00 0.97  5.00173    
3 0.01 0.00 0.97 0.00  6.77016  
4 0.00 0.02 0.00 0.97  6.78022 
5 0.82 0.54 0.21 0.01 33.4493 7.03487 
6 0.28 0.85 0.01 0.31 34.4767        7.29735 
7 0.06 0.00 0.95 0.00  8.15270 
8 0.00 0.08 0.00 0.947  8.15270  
23 0.82 0.54 0.23 0.01 130.329 39.39860 
24 0.51 0.85 0.01 0.31 134.221 40.76115 
25 0.91 0.2 0.07 0.01 292.025 107.45330 
26 0.2 0.947 0.028 0.08 300.718 110.89764 
27 0.82 0.50 0.21 0.01  516.812        223.56725 
28 0.52 0.85 0.01 0.31 533.886         224.72695 

6 Conclusions 

The numerical procedure based on a coupling finite element formulation and the 
boundary element method is developed for numerical analysis of fluid–structure 
interaction for a double tank. We introduce the representation of the velocity 
potential as the sum of two potential, one of them corresponds to problem of the 
fluid free vibrations in the rigid shell and another one corresponds to problem of 
elastic shell with fluid without including the gravitational component. Integration 
by the fluid volume is accomplished using BEM based fluid flow solver. The 
spectrum of frequencies for double tank was analysed.  
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