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Abstract 

The modelling of the 2D sound pressure wavefield in the presence of thin 
absorbing screens attached to the walls of a duct, assumed to be infinitely long, 
is described in this paper. The simulation uses a frequency-domain Dual-BEM 
(BEM/TBEM) formulation, which overcomes the thin-body difficulty that arises 
with the classical BEM formulation. The sound absorption is simulated by 
imposing impedance boundary conditions, which are applied in conjunction with 
a Dual-BEM approach. The fundamental solutions used in the formulation allow 
the solution to be obtained without discretizing the duct’s walls. Thus, only the 
boundary of each absorbing screen attached to the duct’s walls is modelled, 
which makes the proposed formulation efficient even at high excitation 
frequencies. The hypersingular integrals that result from the implementation of 
the TBEM are computed analytically. The formulation is used to compare results 
obtained with absorbing screens with those obtained with rigid screens and with 
those obtained in a duct without screens. Results in the time domain are obtained 
by applying an inverse Fourier transform to the frequency results. 
Keywords: dual-BEM, thin body, sound absorption. 

1 Introduction 

The demand for quieter environments has led to the imposition of lower noise 
levels inside buildings. Those limits are usually imposed by legislation and 
building codes. Sound pressure levels inside buildings are often reduced by 
installing sound attenuation systems in ventilation ducts.  
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     The usual strategies for noise attenuation in ducts consist of fitting Helmholtz 
resonators, and lined expansion chambers. However, these devices tend to 
occupy too much space which is a drawback if there are space limitations. Most 
studies in this field have analysed and/or modelled the effect of placing 
absorptive linings on the walls of the duct [1] or applying some sort of expansion 
chamber to reduce the noise in the duct [2].  
     A two-dimensional analytical solution was developed by Selamet et al. [3] to 
determine the acoustic performance of a perforated single-pass, concentric 
cylindrical silencer filled with fibrous material. Lawrie and Guled [4] and Huang 
[5] developed modal approaches to investigate the performance of modified 
reactive silencers in which a membrane is attached to the internal walls of an 
expansion chamber. 
     The coupling between modal methods and the finite element method has been 
used to model sound propagation in ductwork that contains one or more non-
uniform obstacles [2]. A general finite element formulation for the analysis of 
the sound field in a flow duct with a surrounding space filled with porous or 
fibrous material was proposed by Peat and Rathi [6]. Boundary element methods 
(BEM) and analytical methods have been employed by Selamet et al. [7] to 
predict the acoustic attenuation of a hybrid silencer that consists of two single-
pass perforated filling chambers and a Helmholtz resonator.  
     As some of these systems cannot be used where there are space constraints 
several authors have considered installing noise screens within the duct. Rim and 
Kim [8], for instance, analysed experimentally and analytically the attenuation 
produced by acoustic screens inside a rectangular ventilation duct. Our work 
follows a similar principle and sets out to simulate the sound wave propagation 
inside a duct where the sound attenuation is provided by thin elements working 
as screens to counter sound propagation.  
     The boundary element method has been widely used to model acoustic 
problems [9, 10]. The major advantage of this method is that it is particularly 
effective for modeling unconfined media since it automatically satisfies the far-
field conditions, and only requires the discretization of the interfaces of the 
objects to be modelled. But it has some limitations when used to model objects 
of very small thickness because the implementation of the integral equations on 
both sides of the object leads to a singular system of equations.  
     This problem can be solved if the Dual Boundary Element Method (Dual-
BEM) is applied [11]. It uses the classic formulation of the boundary integral 
equation on one side of the object and its first spatial derivative along the 
direction orthogonal to the boundary on the opposite side, to yield a system of 
equations that is not singular. 
     When the object has null thickness a very efficient approach is the traction 
boundary element method formulation (TBEM). In this case the object to be 
discretized is represented by only one line of boundary elements and the 
resulting system of equations is smaller than that provided by the Dual-BEM 
formulation [12, 13]. These methods have been employed to solve problems of 
sound propagation in the presence of rigid noise barriers over a rigid or an 
impedance plane [11, 13].  
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     In this work a Dual-BEM formulation is applied in the frequency domain to 
simulate the sound propagation in a duct in the presence of two-dimensional thin 
screens with an absorbing surface. This formulation includes fundamental 
solutions for a fluid layer with rigid boundaries [12], using the technique of 
image sources. Only the screens’ surfaces need to be discretized, not the duct 
boundaries. A given impedance (Robin boundary condition) [14] is taken as a 
boundary condition in the Dual-BEM formulation to ascribe sound absorption to 
the screens’ surface. The sound absorption coefficients of the boundaries are thus 
taken into account by introducing impedance coefficients that are defined by the 
ratio between the pressure and velocity of the sound waves that propagate from 
the source to each nodal point, considering a coefficient of reflection for the 
incident waves. This formulation lets the absorption coefficients be frequency 
dependent and also allows the screens to be modelled with any irregular 
geometry. The problem formulation and the Dual-BEM approach are presented 
next, followed by a numerical application to illustrate the applicability of the 
method. 

2 Problem definition 

The problem consists of an infinitely long fluid layer, with rigid boundaries, of 
density  , in which the waves propagate with a speed c , where a two-
dimensional cylindrical inclusion limited by a surface S  is embedded (Figure 1).  

 

 

Figure 1: Problem definition. 

     When this system is subjected to a pressure line source placed at  ,s sx y  

emitting at a frequency ω, whose amplitude varies sinusoidally in the third 

dimension  z , the incident sound pressure generated in the frequency domain 

can be expressed as: 
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where  nH   are
 
second kind Hankel functions of the order n , i 1   and 

2
2

2c zk k
c


  , with  Im 0ck  ,    2 2

0 s sr x x y y    , and zk  is the 

axial wavenumber. 
     The pressure ( p ) at any point in the domain can be calculated with the 

Helmholtz equation: 

 

 
2 2

2

2 2
( , , , ) ( , , , ) 0z c zp x y k k p x y k

x y
 

  
     

.  (2) 

3 Boundary element method formulation 

This section describes the boundary integral formulations needed to calculate the 
pressure wavefield scattered by the inclusion. 
     The objective is to model screens of small thickness within an infinitely long 
fluid layer simulating a duct. The classical formulation of the boundary element 
method degenerates when used to calculate the wavefield scattered by a thin 
inclusion. The problem can be solved by means of a Dual-BEM approach that 
consists of applying the BEM and TBEM formulations at opposite collocation 
points of the discretized boundary. The application of the BEM formulation to 
the surface is equivalent to the use of monopole loads while the application of 
the TBEM formulation is equivalent to the use of dipole loads. 

3.1 BEM formulation 

The boundary integral equation used in the classical formulation of the BEM can 
be derived from the Helmholtz equation in the frequency domain by applying the 
reciprocity theorem:  
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( , , , , , , ) ( , , , )d ( , , , , , )

z n z z
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n z z s s z
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b p x y k q x y k G x y x y k s

H x y x y k p x y k s p x y x y k

  

  

 







n

n
, (3) 

where G  and H  are fundamental solutions for pressure ( p ) and pressure 

gradients ( q ) at  ,x y  on the boundary S  due to a virtual point pressure source 

at a collocation point  0 0,x y . 
1nn  is the unit outward normal along the 

boundary S , at ( , )x y , defined by the vector  1 1 1cos , sinn n n n . The factor 

b  takes the value 1 / 2  if  0 0,x y S  and S  is smooth. 
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The fundamental solutions for pressure and pressure gradients in Cartesian 
coordinates for an infinite medium are:  

 
 0 0 0 01

i
( , , , , , )

4z cG x y x y k H k r  
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
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n
, (4) 

with 2 2
0 1 0 0( ) ( )r x x y y    . 

3.2 TBEM formulation 

The boundary integral equation formulated in tractions can be derived by 
applying the gradient operator to the boundary integral equation (3), which 
represents the application of dipole pressure loads. In this case, when the surface 
of the boundary is loaded by dipole loads, the boundary integral equation in 
tractions can be written as follows:  
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(5)

 

     The fundamental solutions G  and H  are calculated by deriving the initial 
fundamental solutions  G  and H . In this equation, 2nn   is the unit outward 

normal to the boundary S  at the collocation points  0 0,x y , defined by the 

vector  2 2 2cos , sinn n n n . In equation (5) a  takes a null value for piecewise 

straight boundary elements and the fundamental solutions for an unbounded 
medium are defined as follows: 
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(6) 

     The incident field in equation (5) is given by: 

 
  0 0
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n
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     In the present formulations only the surface of the screens is discretized by 
boundary elements. Thus, in each formulation the fundamental solutions take 
into account terms that are obtained by the technique of image sources [12], with 
respect to the waves reflected by the horizontal boundaries of the duct. 

3.3 Sound absorption simulation 

The imposition of absorption on the screens’ surface is simulated by relating the 
velocity and pressure at each nodal point as follows:  

  1

1
( , , , , ) i ( , , , )

Zn z zq x y k p x y k  


 n  (8)

 

to be used in equations (3) and (5). 
     The impedance factor is expressed by the ratio between the velocity and 
pressure and the sound absorption coefficient   through the expression, 
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
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are the incident pressure and velocity respectively, with

   2 2

00 0 0s sr x x y y    .   

     The solution of the equations (3) and (5) requires the discretization of the 
surface S  with N straight boundary elements with a nodal point in the centre of 
each element. The required integrations are performed using Gaussian quadrature 
when the loaded element is to be integrated. When the element to be integrated is 
the loaded element the integrals become hypersingular and must be solved 
analytically [15, 16].  

4 Time domain pressure wavefield 

The model allows the calculation, in the frequency domain, of the sound pressure 
at any point of the medium. The time variation of the pressure wavefield can be 
obtained by applying an inverse Fourier transform to the frequency domain 
findings. The temporal pressure variation is modelled by having the source 
modelled as a Ricker pulse of a given characteristic frequency. 
     The Ricker pulse is defined in the frequency domain by 

 
  2i 22 e est

oU A t        , (10) 
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where A  is the amplitude, / 2ot  , 
st  is the instant at which the function 

reaches its maximum and 
ot  is the characteristic period of the function. 

     The simulations allow the observation of the event for a period that depends 
on the frequency increment  , and is equal to 2T    . For a given 

receiver, if the event lasts longer than the time modelled aliasing phenomena 
arise.  The pulses arriving at the receiver after T  will appear at the initial 
instants. This is avoided by introducing a response attenuation through complex 
frequencies with a small imaginary part of the form ic     (with 

0.7   ) [17]. This artificial effect is removed in the time domain by 

rescaling the response using an exponential window e t   [18]. 

5 Application of the model 

The applicability of the numerical formulation just described is illustrated by 
modeling acoustic screens inside a duct of infinite extent. 
     The 2D pressure wavefield is calculated in an air layer (   1.22kg m3) 

confined by rigid boundaries (duct) in which screens of reduced thickness are 
located. The duct is 0.30 m thick and contains six screens of 1 mm thickness at 
an inclination of 20 degrees in relation to the vertical direction (see Figure 2). 
 

 

Figure 2: Geometry of the problem. 

     The boundaries of the screens are discretized by boundary elements whose 
number varies depending on the frequency of the source. A ratio equal to ten is 
adopted between the wavelength of the incident waves and the length of the 
boundary elements. The minimum number of boundary elements used in each 
screen was 48.  
     A pressure line load (kz= 0.0 rad / m) located at x=-0.2 m and y= 0.15 m 
disturbs the air medium, where the pressure fluctuation is registered at a grid of 
9000 receivers. 
     The computations are performed in the frequency range of [200Hz, 
25600 Hz], with a frequency increment of 200 Hz, which defines the total time 
duration of 5 ms. The pressure in the time domain is obtained by applying an 
inverse Fourier transform to the frequency results. The source is modelled as a 
Ricker pulse with a characteristic frequency of 8 000 Hz. 
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     To illustrate the effect of sound absorption in the pressure field, a constant 
absorption coefficient α = 0.7 at all frequencies was ascribed to the screen 
surfaces. Three simulations are presented to verify the effect of the screens and 
of the sound absorption coefficient on the pressure wavefield: a) the first 
considers only the duct without any obstacle inside; b) the second assumes the 
presence of rigid screens inside the duct; c) in the third the duct contains 
absorbing screens with a sound absorption coefficient of 0.7.  
     A sequence of snapshots that display the pressure wave field over the grid of 
receivers at different instants is presented to illustrate the differences between 
these three scenarios. The pressure amplitude is displayed by a colour scale 
which ranges from blue to red as the amplitude increases.  
     At t = 0.77 ms (see Figure 3), the incident wavefront has been reflected on the 
walls of the duct. Where the screens are in place a first reflection on the surface 
of the first screen and a diffraction starting at the top of the screen are visible. It 
can also be seen that the reflected wave amplitude at the screen in Figure 3c) is 
lower than in Figure 3b), due to the sound absorption effect introduced in 
Figure 3c). 
 

a) 

b) 

c) 

Figure 3: Time pressure responses over a grid of receivers for a characteristic 
frequency of 8000 Hz, at t = 0.77 ms: a) duct; b) duct with rigid 
screens; c) duct with absorbing screens. 
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     Figure 4 shows that the pressure wavefield at the bottom of the duct between 
the first two lower screens (Figures 4b) and 4c)) is more attenuated than the 
example without barriers (Figure 4a)). This is because the wave was reflected 
back by the first barrier.  
 

a) 

b) 

c) 

Figure 4: Time pressure responses over a grid of receivers for a characteristic 
frequency of 8000 Hz, at t = 1.07 ms: a) duct; b) duct with rigid 
screens; c) duct with absorbing screens. 

     At t = 1.40 ms a wave reflection on the first upper screen and the wavefront 
reflection and diffraction on the second lower screen are visible (Figures 5b) and 
5c)). The amplitude of these waves (near the second lower screen) is low due to 
the energy that was reflected back by the previous screens. A slight decrease in 
the amplitude of Figure 5c) in relation to Figure 5b) is also detectable; it is 
caused by the presence of absorption in the screens of Figure 5c). 
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a) 

b) 

c) 

Figure 5: Time pressure responses over a grid of receivers for a characteristic 
frequency of 8000 Hz, at t = 1.40 ms: a) duct; b) duct with rigid 
screens; c) duct with absorbing screens. 

     As time elapses the wavefront’s progress is obstructed by the screens, as can 
be seen by comparing Figure 6a) with Figures 6b) and 6c); in Figures 6b) and 6c) 
the waves are reflected back and also suffer successive reflections between 
screens. These multiple reflections have the disadvantage of enhancing the sound 
pressure field between screens (see Figure 6b)). However, this amplitude can be 
attenuated when the screens have absorption properties (see Figure 6c)). This 
effect is noticeable, for example, when observing the pressure field between the 
first and second lower screens in Figures 6b) and 6c) (a similar effect is seen 
between the first two upper screens). 
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a) 

b) 

c) 

Figure 6: Time pressure responses over a grid of receivers for a characteristic 
frequency of 8000 Hz, at t = 2.22 ms: a) duct; b) duct with rigid 
screens; c) duct with absorbing screens. 

6 Conclusions 

Wave propagation in an infinitely long air duct containing absorbing thin screens 
was modelled using a Dual formulation of the BEM. Sound absorption was 
included by considering a specific impedance at the boundaries of the barriers. 
Analysis of the results shows that the present model adequately simulates the 
physical phenomena involved. The insertion of rigid screens within the duct 
reduces the progress of the wavefront, and consequently the pressure amplitude 
along the duct, because energy is reflected back or trapped between the screens. 
However, since these reflections will increase the energy before and between 
screens the solution is to use sound absorption on the surface of the screens in 
order to reduce the sound field in those areas. 
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