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Abstract 

This paper models the propagation of sound in the vicinity of 3D acoustic 
barriers placed parallel to a building façade to mitigate the noise generated by 
point pressure sources.  The barriers are assumed to be very thin rigid elements. 
The problem is solved by developing and implementing a 3D boundary element 
method formulation based on the normal derivative integral equation (TBEM). 
The TBEM is formulated in the frequency domain and the resulting 
hypersingular terms are computed analytically.  
     After verifying the model against 2.5D BEM solutions, several numerical 
applications are described to illustrate the practical usefulness of the proposed 
approaches. Different longitudinal barrier geometries are simulated to evaluate 
the influence of this characteristic on the sound pressure level attenuation 
attained at the building façade. 
Keywords: acoustic wave propagation, 3D thin barriers, normal derivative 
integral equation, analytical integration of hypersingular integrals. 

1 Introduction 

Different numerical methods have been developed to solve acoustic problems in 
either the time domain or the frequency domain. The works by Marburg and 
Nolte [1], Cheng and Cheng [2] and Pluymers et al. [3] and the reference book 
by Jensen et al. [4] give a good general overview of the developments in this 
field. 
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     Of the various numerical methods the boundary element method is perhaps 
the best one to model acoustic barriers since it can easily account for infinite or 
semi-infinite domains and automatically satisfy the far-field radiation conditions. 
As it is based on fundamental solutions established for infinite spaces, the 
method can be successfully used to model scenarios of outdoor sound 
propagation or underwater propagation in which the propagation media may be 
described as unbounded domains (Grilli et al. [5], Santiago and Wrobel [6], 
Pereira et al. [7]).  
     However, the BEM cannot be directly applied to problems which involve 
very thin objects such as acoustic screens because the establishment of the 
boundary integral equations on both sides of the object leads to a singular 
equation system. Special solution strategies can be adopted that avoid this 
problem. The so-called dual BEM formulation is one such strategy (as reported 
in Portela et al. [8], Chen and Hong [9] and Krishnasamy et al. [10]): in it, both 
the classic boundary integral equation and its first spatial derivative along the 
orthogonal direction to the boundary are used to obtain a non-singular system of 
equations. If the thickness of the obstacle is null a very effective Traction-BEM 
(TBEM) formulation can also be used (see e.g. [11]) which enables the obstacle 
to be described by means of a single line of boundary elements. The dual BEM 
and the TBEM techniques have been successfully used to study acoustic wave 
scattering in the presence of thin barriers (Lacerda et al. [12, 13], António et al. 
[14]). 
     Most of the works mentioned above simulated two-dimensional barriers, 
assuming either the incidence of pressure waves generated by two (2D 
formulation) or three-dimensional pressure sources (2.5D formulation).  Despite 
the computational restrictions of 3D BEM formulations when it comes to solving 
large acoustic problems, they are suitable for solving small-scale problems and 
give a good approximation of the 3D sound field. 
     In this paper the authors address the use of a frequency-domain BEM 
formulation based on the normal derivative integral equation to model sound 
propagation in 3D configurations incorporating very thin screens. One of the 
most significant difficulties posed by this formulation is the integration of 
hypersingular integrals that are here performed analytically.  
     In the sections that follow, the three-dimensional problem is presented and the 
three-dimensional normal derivative integral equation described. The strategy 
devised to solve the hypersingular integrals analytically is then explained. 
Finally, a method to obtain time-domain responses from frequency-domain 
calculations is described and a number of numerical applications are presented. 
These applications mainly focus on the effect of the longitudinal geometry of the 
acoustic barriers, used to mitigate the noise generated by 3D point sources, on a 
building façade, and the sound pressure level attenuation is calculated. 

2 3D normal derivative integral equation (3D TBEM) 

This section first describes how the 3D TBEM is formulated to obtain the 
scattered acoustic pressure wave field, i.e. the pressure in the host medium 
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generated by the incident three-dimensional pressure waves illuminating a 3D 
barrier, in an unbounded medium. The simulation of the sound propagation when 
the barrier is in a corner space that represents a floor and a building façade is 
presented afterwards. 

2.1 Unbounded medium 

Consider a three-dimensional barrier, bounded by a surface, S , in a spatially 
uniform acoustic medium of density  , where the pressure waves propagate at 

velocity c  (see Figure 1). This system is subjected to a pressure point source 
placed at  ,s s sx y z , 

 
      iˆ ( , , , ) e t

s s sf x y z t x x y y z z          (1) 

where  sx x  ,  sy y   and  sz z   are Dirac-delta functions, and 
 

is the 

frequency of the source. 
 

 

Figure 1: The geometry of the problem. 

2.1.1 Incident pressure field 
The incident pressure field generated by this source can be expressed as 

 

 0i

inc
0

e
( , , , , , , )

ck c t r

s s sp x y z x y z
r




 , (2) 

in which ck
c


 , i 1   and      2 2 2

0 s s sr x x y y z z      . 

     The pressure ( p ) at any point of the spatial 3D acoustic domain can be 
computed by using the Helmholtz equation: 

 
 

2 2 2
2

2 2 2
( ) ( , ) 0cp k p

x y z
 

   
       

x, x , (3) 

in which ( , , )x y zx . 
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2.1.2 Normal derivative integral equation 
The normal derivative integral equation can be derived by applying the gradient 
operator to the boundary integral equation, 

 
0 1 0 inc 0( , ) ( , , , ) ( , )d ( , , )n s

S

b p H p s p      nx x x x x x  (4) 

where H  represent the Green’s functions for pressure gradient ( q ) at a point x  
on the boundary S  due to a virtual point pressure source at a collocation point 

 0 0 0 0, ,x y zx . 1nn  represents the unit outward normal along the boundary S , at 

x . The factor b  takes the value 1 / 2  if 0 Sx  and 1  otherwise. 

     The Green’s functions for pressure gradients in an unbounded medium, in 
Cartesian coordinates, can be given by: 

 
   -i
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e i 1
, , ,
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r

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
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n

x x , (5) 

with      2 2 2

0 0 0r x x y y z z      . 

     The application of the gradient operator to eqn (4), which can be seen as 
assuming the existence of dipole pressure sources (dynamic doublets), leads to 

 
0 1 2 0 0 2( , ) ( , , , , ) ( , )ds ( , , , )n n n sinc

S

a p H p p     n n nx x x x x x   (6) 

     The Green's functions H  are defined by applying the traction operator to H , 
which can be seen as the derivatives of these former Green's functions, to obtain 
pressure gradients. In these equations, 2nn  is the unit outward normal to the 

boundary S  at the collocation points 0x , defined by the vector 2nn . In this 

equation, the factor a  is null for piecewise planar boundary elements. 
     The required three-dimensional Green’s functions for an unbounded space are 
now defined as: 
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     In equation (6) the incident field is computed as 
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     The global solution is found by solving equation (6). This requires the 
discretization of the interface S , the boundary of the obstacle. In this analysis 
the interface is discretized with N  planar boundary elements, with one nodal 
point in the centre of each element. 
     The required integrations in these equations are evaluated using a Gaussian 
quadrature scheme when they are not performed along the loaded element. For 
the loaded element, the existing hypersingular integrands of the Green’s 
functions are calculated analytically. 

2.1.3 Analytical Integration of the hypersingular integral 
Consider the singular rectangular element of width W (in the x  direction) and 

length L (in the z direction) shown in  Figure 2: 
 

W/2

W/2

L/2L/2

y

x

z

 

Figure 2: Geometry of the boundary element. 

     The integration of the Green’s function 
/2 /2
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 
  n nx x  (with 

2 1n nn n ) leads to a hypersingular term.  

     The evaluation of this integration is performed by writing 1 2 0( , , , , )n nH n nx x  

as the sum of two-dimensional Green's functions with varying spatial 
wavenumbers. This is accomplished by first applying a Fourier transformation in 
the z  direction to the three-dimensional Green's function  
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     The application of a spatial Fourier transformation to this in that direction 
leads to a line pressure field, whose amplitude varies sinusoidally in the third 
dimension  z ,  
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in which  nH   are second kind Hankel functions of the order n , 
2

2
2 zk k

c


  , 

with  Im 0k  ,    2 2

0 0 0r x x y y    , where zk  is the wavenumber in the z  

direction. 
     Assuming the presence of an infinite set of equally-spaced virtual sources in 
the z  direction, the former Green's function (in eqn. 9) can be written as:  
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where vsL  is the spatial source interval, and 
2

zm
vs

k m
L


 .  

     This equation converges and can be approximated by a finite sum of terms 
(M). The distance vsL  needs to be large enough to avoid spatial contamination. 

The use of complex frequencies further reduces the influence of the 
neighbouring fictitious sources. The 3D Green's field can therefore be computed 
as the pressure irradiated by a sum of harmonic (steady-state) line loads, whose 
amplitude varies sinusoidally in the z  dimension. 
     Using the procedure above, the evaluation of the integration 
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can be performed by writing 1 2 0( , , , , )n nH n nx x  as 

the sum of two-dimensional Green's functions with varying spatial 
wavenumbers. This can be accomplished by applying the traction operator to the 
Green's function 
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     This procedure allows the integration of 
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where
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where  nsS   are Struve functions of order ns. 

2.2 Corner-space domain 

To avoid having to discretize the horizontal and vertical interface which 
simulates the floor and building façade, the above Green's functions and the 
incident pressure need to be rewritten in a way that satisfies null normal 
velocities at this boundary (assumed to be rigid). This can be accomplished by 
adding the pressure field generated by the real source to that produced by virtual 
sources (image sources), which are located in such a way that they act as mirrors 
of the real source in relation to the vertical and horizontal planes. The Green´s 
functions are not presented here since this is a straightforward procedure. 

3 Numerical applications 

Figure 3 illustrates the two geometries simulated to evaluate the influence of the 
longitudinal barrier shape of a 3D barrier on the sound attenuation on a building 
façade. They are: Case I - barrier with a horizontal sinusoidal variation with a 
wavelength of 6.0 m; Case II - barrier with a horizontal sinusoidal variation with 

a wavelength of 1.5 m. The amplitude of the sinusoidal variation is kept constant 

at 0.25 m. All barriers are thin, 3.0 m high, 6.0 m long and placed parallel to a 

tall building, with their axes 5.0 m from the building façade. The host acoustic 

medium is air.  
 

  Case I  Case II 

 
 
 
 
 

 

 

a) b) 

Figure 3: Geometry used on the numerical applications: a) 3D view; b) 
horizontal cross-sections of the geometries used in the numerical 
applications: Case I - barrier with a horizontal sinusoidal variation 
with a wavelength of 6.0 m; Case II - barrier with a horizontal 

sinusoidal variation with a wavelength of 1.5 m. 
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     The 3D source is placed at  7 m, 2 m,10 m .  Pressure computations are 

performed in the frequency range of  4.25, 1088.0 Hz   with a frequency step of 

4.25 Hz  over fine grids of receivers placed over four planes: 0.1 mx  , 

0.1 my  , 0.0 mz   and 10.0 mz  . The receivers were spaced at equal intervals 

of 0.2 m in the x, y and z directions. 

     Time responses were then obtained by applying an inverse Fourier 
transformation with the source temporal variation reproducing a Ricker pulse 
with a characteristic frequency of 400.0 Hz. 
 

 Case I Case II

 

t =
 4

.5
 m

s 

 

t =
 1

4.
5 

m
s 

  

t =
 2

9.
0 

m
s 

 

 

Figure 4: Pressure responses at time instants 4.5mst  , 14.5mst   and 

29.0mst  .  
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     Figure 4 contains the time domain snapshots showing the pressure wavefield 
at different time instants ( 4.5mst  , 14.5mst    and 29.0 mst  ). At each instant 

three plots are displayed for each of the 4 cases. 
     At 4.5mst  , Figure 4 shows, for all cases, that part of the incident pulse has 

been reflected by the ground and other part reaches the barrier. The result of the 
diffraction of these two pulses by the top of the barrier is clearly seen at 

14.5mst  . The reflections of the previous pulses at the barrier are also quite 

visible, travelling backwards. In addition, the diffraction caused by the lateral 
wedges of the barrier has generated a set of pulses that are present for all cases.  
It can be seen that the more undulating barriers (with a smaller horizontal 
wavelength variation) generate a more complex diffracted field, particularly 
visible on the lateral barrier wedges, given the reflections from the curved 
surface of the barrier. 
     Pulses that were previously diffracted at the top and at the lateral wedges of 
the barrier have already reached the ground behind the barrier and the building 
façade whence they were reflected back at 29.0 mst  , creating a complex 

pattern of pulses. Among the different pressure fields created by the different 
barriers, it can be seen that the more undulating barriers exhibit more complex 
wavefields. It can further be observed that in the presence of those barriers 
pressures pulses of more enhanced amplitude travel in the lateral directions after 
being reflected from the barriers' surface. 
 

3.1 Sound pressure level attenuation 

From the time response it is not easy to conclude if the longitudinal shape 
influences the sound attenuation provided by a 3D rigid acoustic barrier on a 
building façade, therefore the sound pressure level attenuation provided by the 
different barriers is computed in this section. 
     The time domain responses are the basis for calculating the sound pressure 
level SPL) over the same grid of receivers used before. The expression 

2 5 210 log( / (2 10 ) )p   is used to calculate the SPL in dB, where p  refers to the 
maximum amplitude of the time responses. Thus the later pulses arriving at the 
grid of receivers, produced by the multiple reverberations between the building 
façade and the barrier, do not contribute to the final value for the SPL because 
their amplitude decays. The SPL attenuation is calculated as the difference 
between the SPL obtained when there is no acoustic barrier and the SPL 
calculated in the presence of an acoustic barrier.  
     Figure 5 displays the sound pressure level (the left plots), calculated as 
described above, and its attenuation (the right plots) when there is a barrier 
between the source and the building. 
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 Sound Pressure Level Sound Pressure Level attenuation 
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Figure 5: Sound pressure level and attenuation at the grids of receivers over 
four planes: 0.1 mx  , 0.1 my  , 0.0 mz   and 10.0 mz  . 

 
     The results obtained indicate an SPL attenuation of 15 25dB  behind the 

barriers. The more undulating barriers generate more pronounced SPL 
attenuation, as recorded at receivers placed further away from the central plane 

10.0mz  .  Negative SPL attenuation is registered in front of the barrier, given 

that the SPL provided by the barrier is greater because the reflections of the 
sound pulses on its surface. A general reduction in the sound pressure level is 
noted in front of the barrier for the less undulating barriers. On the building 
façade the most undulating barrier performs a little better, particularly for 
receivers in the vicinity of the central plane.  A general reduction in the sound 
pressure level attenuation is noted with increasing distance between the receiver 
and the source. 
     The sound pressure level and its attenuation were also calculated for pulses 
with different frequency characteristics. The results revealed similar features (not 
illustrated).  
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4 Conclusions 

A boundary element method based on the normal derivative integral equation to 
model acoustic wave propagation in the vicinity of three-dimensional thin 
acoustic elements when the medium is perturbed by fixed 3D sources has been 
proposed in this paper. The solution was defined in the frequency domain. The 
integrals’ integrations are evaluated using a Gaussian quadrature scheme when 
they are not performed for the singular element. The hypersingular integrals that 
appear when the element to be integrated is the loaded one (singular element) are 
integrated analytically. The proposed algorithm was verified against analytical 
solutions derived for cylindrical circular geometries and showed a high degree of 
accuracy. 
     Numerical applications were used to evaluate the effect of the longitudinal 
geometry of 3D thin acoustic barriers on the sound pressure level attenuation on 
a building façade. The analysis of time domain snapshots shows consistency 
with the physics of the problem and made it possible to verify a more complex 
pressure wavefield for the more undulating barriers. The sound pressure level 
and the attenuation provided by the acoustic barrier reflected the phenomena 
registered in the time responses. Receivers in the immediate vicinity of the 
ground show that the interaction between the direct field, diffracted by the edge 
of the barrier, and that first reflected from the ground leads to a poorer 
performance by the barrier. The use of undulating barriers ensures a slight 
increase in the sound pressure level attenuation, particularly for receivers placed 
on the building façade, behind the barrier.  
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