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Abstract 

A model based on the adaptive cross approximation (ACA) accelerated boundary 
element method (BEM) is presented for solving bubble dynamics problems. The 
computational solution of multiple bubble dynamics problems has high CPU 
requirements since it involves moving gas–liquid phase interfaces. In order to 
efficiently solve such problems, a fast algorithm, i.e. adaptive cross 
approximation, is implemented to compress the induced collocation matrix. An 
efficient binary-bit key system is applied to build up a hierarchical tree structure 
for the discretized boundary. With the aid of the key system, the dense matrix is 
partitioned into blocks which satisfy the condition of admissibility or contain 
only one row/column. The implemented ACA-BEM numerical technique is 
verified using the Rayleigh-Plesset equation and it is shown to be of linear 
complexity. 
Keywords: bubble dynamics, boundary element method, adaptive cross 
approximation. 

1 Introduction 

Among all the numerical techniques, the Boundary Element Method (BEM) has 
been particularly favoured for study of bubble dynamics. Analysis of bubble 
evolution involves a geometrical change of bubble surface and transition of the 
bubble; hence it can be represented as a moving boundary problem. The use of 
the BEM allows for discretization of the bubble surface only, which significantly 
simplifies the re-meshing process and therefore has been widely employed by 
many researchers for the solution of this problem (e.g. Blake et al. [1], Chahine 
[2], and Khoo et al. [3]). 
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     BEM has shown to be more advantageous than the other numerical 
techniques e.g. finite element method (FEM), finite difference method (FDM) 
and finite volume method (FVM) in terms of both accuracy and efficiency for 
relatively moderate size of problems. As geometry of the problems become 
complicated, requiring complex meshes, both the computational cost and storage 
are very high due to the fully populated matrix. Therefore, fast numerical 
approaches have been developed to combat the drawbacks of the so called 
Conventional Boundary Element Method (CBEM). A brief review of the fast 
methods can be found elsewhere [4].  
     Algorithm called FFTM was presented by Ong et al. [5], which evaluates the 
potential by expressing the translation operator as a series of discrete 
convolutions of the multipoles. The Fast Fourier Transform (FFT) is applied to 
approximate the convolutions. The FFTM method has been successfully applied 
by Bui et al. [6] for modelling multiple bubble dynamics, with clustering to fit in 
with the property of sparseness of the physical problem. It proves 
computationally effective and requires storage of O(N) (N is the degree of 
freedom). 
     The FFTM method involves the procedure of approximating kernels. The 
form of the kernel varies with different physical problems and approximation of 
the kernel brings about complication during numerical implementation. Another 
kind of fast algorithms, referred to as the adaptive cross approximation (ACA), 
will be discussed in this paper. ACA starts from the point of the algebraic 
system. The matrix is compressed by applying the algorithm for blocks that 
satisfy the condition of admissibility. 

2 Description of the problem 

Bubbles in an ideal (homogeneous, incompressible, irrotational and inviscid) 
liquid medium are considered. The following governing equation is valid:  

 ΔԄ ൌ 0, (1) 

where  denotes the velocity potential and Δ is the Laplacian. The developed 
model is based on the indirect boundary element method (IBEM): 

 Ԅሺxሻ ൌ  σሺξሻ · Gሺx, ξሻ · dSሺξሻபΩ , (2) 

where σ represents the source density distribution. ∂Ω is the domain manifold 
and it represents the discretized surface of the bubble(s). G stands for the 
fundamental solution, taking the form of 1/|x-ξ| for the Laplace equation in Թଷ 
space. Taking the derivative of (2) in the x-, y-, and z-direction, respectively, 
yields: 

 
பமሺ୶ሻ

ப௫ഠሬሬሬԦ
ൌ െαπσሺxሻ   ሺξሻߪ · పሬሬሬԦݔ · ,ሺxܩ ξሻ · dSሺξሻபఆ , (3) 

where α is a parameter in the range of [-4 4], depending on the solid angle of the 
local surface around x. By solving (2) and (3), one obtains the velocity on the  
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bubble surface. The change of velocity potential on the bubble surface can be 
described by the Bernoulli equation: 

 
ୢம

ୢ୲
ൌ െ

ଵ

ଶ
Ԅ|ଶ| 

ଵ

L
ሺpୠ െ pୟ െ pஶ െ κݏሻ, (4) 

where ρL is the liquid density. pb, pa and p∞ are the pressure at the bubble 
interior, the standard atmospheric pressure and the acoustic pressure, 
respectively. κ represents the sum of the principal curvatures on the bubble 
surface and s denotes surface tension of the liquid.  

3 Adaptive cross approximation 

The kernel G(x, ξ) is asymptotically smooth [7] as a function of ξ if  

 ห∂ஞ
୫Gሺx, ξሻห  C୫ · |x െ ξ|ି୫, (5) 

where Cm depends on the order of derivative m, whilst g is independent of m. 
The kernel for Laplace equation, G(x, ξ) =1/|x-ξ|, satisfies the above equation 
when the point x is far from ξ. Asymptotically smooth functions can be 
decomposed and expressed as: 

 Gሺx, ξሻ ൌ ∑ f୨ሺxሻ · g୨ሺξሻ  R୫ሺx, ξሻ
୫
୨ୀଵ , (6) 

where the remainder |Rm(x, ξ)|→0, as m→∞. It is notable that G(x, ξ) can be 
approximated by the product of two vectors of rm dimensions. Let X:={xj: 
j=1,2,…,m} and Ξ:={ξj: j=1,2,…,n} and Hconvex(X) and Hconvex(Ξ) be the convex 
hulls of the point sets X and Ξ. The induced matrix is decomposed into 
multiplication of two rm-rank matrices. This induces the fast algorithm ACA [8]: 
 
     Let ࣧ be an m-by-n matrix block to be approximated and S and R be of the 
same size as ࣧ. S0=0, i1=1, and for k=0,1,2,…,r, compute  

ೖశభܧ (1)
் ܴ ൌ ೖశభܧ

் ࣧ െ ∑ ሺ ܷሻೖశభ ܸ
்

ୀଵ , 

(2) หሺܴሻೖశభ,ೖశభห ൌ ||ሺܴሻೖశభ,ೕݔܽ݉ ് 0 ՜ ݆ାଵ, 

(3) ܸାଵ ൌ ೖశభܧ
் ܴ/ሺܴሻೖశభ,ೖశభ, 

(4) ܷାଵ ൌ ೖశభܧࣧ െ ∑ ሺ ܸሻೖశభ ܷ

ୀଵ , 

(5) หሺܷାଵሻೖశమห ൌ |ஷೖశభ|ሺܷାଵሻݔܽ݉ ՜ ݅ାଶ, 
(6) ܵାଵ ൌ ܵ  ܷାଵ ܸାଵ

் . 

 
     The fast algorithm applied to ࣧൈ requires computation operations of order 
O((m+n)·r2) and memory usage of order O((m+n)·r). Here r depends on the 
prescribed ε. As a stopping criterion the following algorithm is introduced: 

 ||U୩||F · ||V୩||F  εୟ||S୩||F, (7) 

where ||·||F denotes the Frobenius norm, and  
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 ||S୩||F
ଶ ൌ ||S୩ିଵ||F

ଶ  2∑ ሺU୧, U୩ሻሺV୧, V୩ሻ
୩ିଵ
୧ୀଵ  ||U୩ିଵ||F

ଶ · ||V୩ିଵ||F
ଶ. (8) 

     To apply the algorithm, the condition of admissibility should comply with (6) 
and it has the following form: 

 Diamሼ Hୡ୭୬୴ୣ୶ሺΞሻሽ  η · Distሼܪୡ୭୬୴ୣ୶ሺXሻ,  ୡ୭୬୴ୣ୶ሺΞሻሽ (9)ܪ

where η is a parameter with 0<η<1 for the oscillatory kernel G(x, ξ) =1/|x-ξ|. 

4 Tree structure and matrix partitioning 

Although it does not involve approximation of the kernel function, the fast ACA 
algorithm is restricted to the admissible condition in (9) .  In order to compress 
the induced matrix by ACA, a hierarchical tree structure is built up to distinguish 
blocks that satisfy the prescribed condition. The basic idea is to enclose the 
whole mesh with a root cell (at Level 0). The subdivision is carried out until each 
node of the mesh occupies a unique cell. An example of the tree structure is 
shown in Figure 1. The degree of darkness in (a) implies the level of the cell.  
 

 
(a)                                                               (b) 

Figure 1: The tree structure for a mesh of 642 nodes representing a sphere.  

     In Թଷ space, a cell is subdivided into eight uniform sub-cells, labelled from 0 
to 7. These labels can be represented with three binary digits, i.e. 000-111. 
Consequently, a key system is introduced to represent the oct-tree structure in the 
Թଷ space. Details on the efficient representations can be found in [9]. A complete 
key is made up of 64 bits, which corresponds to the data type INTEGER(8) in 
FORTRAN. Each node possesses a unique key. The decimal number of the key 
indicates the position of the node in the collocation matrix. The row index is 
identified as a source point and the column index as a collocation point.  
     Meanwhile, the binary form of the key can be interpreted as the location of 
the node in the tree. The relative locations between nodes can be obtained as 
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well. Hence, one can now determine the admissibility of the blocks that contain 
the sets of continuous source points X and continuous collocation points Ξ by 
using the following steps: (I) determine cells Ψs and Ψc that cover X and Ξ, 
respectively; (II) evaluate Hconvex(Ξ)  by the size of Ψc; (III) evaluate the distance 
between Hconvex(X) and Hconvex(Ξ) with relative locations between  Ψs and Ψc; 
(IV) determine whether admissibility is satisfied by using (9) (the block for 
corresponding to X and Ξ is termed as BX,Ξ).  
     With the aid of the tree represented by the key system, a recursive procedure 
named BLOCKS({Ψs}, {Ψc}, ࣜ) can be carried out as follows to partition the 
matrix: 
 

     Let the cell sets {Ψs}l and {Ψc}l be at the same level l and the top level is 
denoted as lt, then call BLOCKS({Ψs}l, {Ψc}l, ࣜ): 

For each Ψsϵ{Ψs}l and Ψcϵ{Ψc}l, 

IF (X in Ψs or Ξ in Ψc contains only one node) THEN 

 ΒΧ,Ξڂࣜ=ࣜ 

ELSEIF (admissible) THEN 

 ΒΧ,Ξڂࣜ=ࣜ 

ELSE 

 {Ψs}l+1= son(s) of Ψs, {Ψc}l+1=son(s) of Ψc; 

 CALL BLOCKS({Ψs}l+1, {Ψc}l+1, ࣜ): 

ENDIF 

 

     Set ࣜ ൌ  and call BLOCKS({Ψs}0, {Ψc}0, ࣜ), and the whole matrix is 
partitioned into a certain number of blocks, which are stored in ࣜ. Figure 2 
presents two examples of partitioning the N×N matrix. The degree of whiteness 
stands for the efficiency of the ACA algorithm in the block. 

 
(a)                                                               (b) 

Figure 2: Matrix partitioning: (a) N=2562; N=10242. 
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5 Verification and analysis 

The ACA-BEM model is developed based on the abovementioned theories. It 
has been pointed out in [8] that the overall complexity of the ACA method is 
O(N1+αεα), with α>0 arbitrarily small. The ACA-BEM model is verified by 
applying it to the solution of bubble dynamics. A case study is analysed with 
three bubbles in line. 
     The bubbles are assumed initially to be spherical. An idea presented in [10] is 
used to approximate a sphere by a refined icosahedron. Each equilateral triangle 
on the icosahedron is divided into a number of triangles and then they are 
projected to the surface of the sphere. Hence, the sphere can be represented by a 
mesh of quasi-lateral triangles. The numbers of nodes and elements are 10·D2+2 
and 20·D2, respectively (D is a positive integer, termed as the degree of 
refinement). An example of approximating a spherical bubble is presented in 
Figure 3.  
 

 
(a)                                                            (b) 

Figure 3: A sphere approximated by an icosahedron: (a) D=1; (b) D=8. 

5.1 Verification of the ACA-BEM model 

The Rayleigh-Plesset equation was developed by Rayleigh [11] and Plesset [12]. 
It has been applied for analytical solution of bubble cavitation and spherical 
bubble oscillation [13, 14]. The simplified Rayleigh-Plesset equation takes the 
form: 

 RRሷ 
ଷ

ଶ
Rሶ ଶ ൌ

ଵ

L
ሺpୠ െ p∞ሻ, (10) 

where R is the radius of the spherical bubble. Starting from an initial bubble 
radius R0 with the prescribed initial condition [15],  

 Ԅ ൌ R ൜
ଶ

ଷ
ቀ
୮ಮି୮ౘ
L

ቁ ቀ
Rౣ
Rబ
ቁ
ଷ
െ 1൨ൠ

భ
మ
, (11) 
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the bubble expands to the maximum size Rm, and then undergoes collapse. pb-p∞ 
equals the standard atmospheric pressure pa. The dimensionless results are shown 
in Figure 4. Figure 4(a) presents variation of the bubble radius, increasing from 
0.1 to the maximum size 1.0 and subsequently decreasing to around 0.34 at 
t=1.80. The three curves come from the Rayleigh-Plesset model, the classic 
BEM (CBEM) model and the ACA-BEM model, respectively. It demonstrates a 
good agreement between the three models. Particularly, curves from CBEM and 
ACA-BEM are completely overlapped, which indicates that the accuracy of the 
fast algorithm is satisfactory.  The radial velocity Rሶ  of the bubble in response to 
the radius R is depicted in Figure 4(b). The negative value of Rሶ  implies bubble 
expansion and the positive corresponds to bubble collapse. Both the CBEM and 
ACA-BEM results lie close to the curve representing the analytical solution. 
 

 
(a)                                                            (b) 

Figure 4: Bubble expansion and collapse: (a) radius variation in time; (b) 
radial velocity versus radius. 

5.2 Efficiency of the ACA-BEM model 

The efficiency of ACA-BEM model is discussed by comparison with the CBEM 
model. Meshes with different degrees of refinement (D=2, 3, …, 32) are 
introduced to simulate the evolution of a single spherical bubble. Consequently, 
the degree of freedom ranges from 42 to 10242 by 10·D2+2. Simulations are 
carried out on a workstation with Intel Xeon W5580 @3.20 GHz processor and 
24.0 GB RAM. 
     The relationship between the degree of freedom N and the required memory 
is shown in Figure 5. Both the CBEM and ACA-BEM curves grow as N 
increases. The slope of the CBEM curve is increasing exponentially, whilst the 
other remains linear. As a result, the gap between the two curves increases. This 
shows that the memory usage is linearly related to the degree of freedom in the 
ACA-BEM model. The results show that ACA-BEM provides reduction in 
required memory by over 90% compared to CBEM, when N≈104. 
     The computational time is divided into two parts: time to construct the 
algebraic system of equations and time to solve the system. Figure 6 presents the 
computational cost versus the degree of freedom N. As N increases, both models 
require more CPU time for system construction. The curves for CBEM and 
ACA-BEM in Figure 6(a) demonstrate a distinctive gap for large N, which is 
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Figure 5: Memory usage versus degree of freedom. 

similar as that for memory usage. The curve for the CPU time ratio shows the 
ACA-BEM model spends less than 10 per cent of the time required by the 
CBEM model when N≈104. In case of small N, the ACA-BEM model might 
require more CPU time for system construction (up to 150 per cent of the time 
with the CBEM model). This is due to the fact that the ACA-BEM model spends 
extra time building up the tree structure and partitioning the matrix.  
     In the CBEM model, a direct solver based on LU decomposition is employed 
to solve the asymmetric and fully populated system. This indicates computation 
operations of O(N3). By contrast, the iterative GMRes solver is applied to solve 
the compressed system in the ACA-BEM model. Results are presented in 
Figure 6(b). The curve for the ratio of CPU time between the ACA-BEM and 
CBEM models decreases as N increases, although a slight fluctuation can be 
observed due to the unpredictable iteration number of the GMRes solver. Less 
than 2 per cent of the CPU time required by the CBEM is needed to solve the 
system in the ACA-BEM when N≈104. 
     One can find that the CPU time required for system construction is higher 
than that for solving the system, by comparing the time scales of Figure 6(a) 
and (b). 
 

 
 

(a)                                                            (b) 

Figure 6: Computational time versus degree of freedom: (a) CPU time for 
system construction; (b) CPU time for solving the system. 
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5.3 Case study 

The ACA-BEM model is applied to study three bubbles in line. The bubbles are 
located in large liquid medium of ethanol, assumed to be in an initially 
equilibrium state. Acoustic forcing is introduced as follows: 

 pஶ ൌ pത  pୟ୫୮ · Re ቄe୧൫ன୲ି·
ሬሬሬԦ∆୶ሬሬሬሬԦ൯ቅ, (12) 

where ω and k is the angular frequency and wave number of the regular wave, 
pamp is the amplitude of the wave pressure and pത is constant. The bubble in the 
middle has an initial size Rm=10 μm with a distance from neighbouring bubbles 
d=10 μm. Two cases are examined, see Figure 7, with the initial size of the 
neighbouring bubbles Rn=Rm and Rn=2Rm, respectively.  

 

Figure 7: Three bubbles in line: (a) Rn=Rm; (b) Rn=2Rm. 

     The last stage of bubble collapse for the case of Rn=Rm is shown in Figure 8. 
One can see that neighbouring bubbles on both sides collapse with jets towards 
the bubble in the middle. Due to a symmetric drag of neighbours, the bubble in 
the middle displays an ‘egg-like’ shape. The maximum speed is observed at the 
tip of jets with 366.5 m·s-1.  

 
(a)                                                                    (b) 

Figure 8: The last stage of bubble collapse (Rn=Rm): (a) geometry; (b) 
velocity distribution. 
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     Results for the case of Rn=2Rm are presented in Figure 9. Neighbouring 
bubbles maintain a roughly spherical shape, though a jet formation can be 
recognized from the velocity distribution. Due to the symmetric drag of the big 
neighbouring bubbles, the small bubble in the centre shrinks from the middle, 
and finally displays a ‘peanut- like’ shape. Presumably, the target will split into 
two smaller bubbles during later stages. A maximum speed of 63.6 m·s-1 is 
observed in the concave area of the small bubble in the middle. 
 

 
(a)                                                                    (b) 

Figure 9: The last stage of bubble collapse (Rn=2Rm): (a) geometry; 
(b) velocity distribution. 

6 Conclusions 

The ACA accelerated BEM technique has been developed for investigating 
bubble dynamics. It demonstrates that both numerical operations and memory 
usage are of linear complexity. The developed model is verified by using 
analytical solutions and the CBEM model. A case of three bubbles in line is 
analysed as an application of the ACA-BEM model to bubble dynamics. 
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