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Abstract

A capsule is defined as a liquid drop enclosed by an elastic membrane. The study of
capsule behavior near a stationary surface has a number of biological applications,
such as red blood cells in the cardiovascular system. However, near-wall behavior
of capsules has not been established well. In this study, we investigate the motion
of initially spherical and biconcave capsules in simple shear flow near an infinite
plane using a boundary integral method coupled to a finite element method. We
find that the deformation of a capsule depends on its initial shape, orientation,
and capillary number (Ca). However, the lift velocity of a capsule is dependent
on its steady state deformation and distance from the wall. The dependence of
lift velocity on deformation may help to explain phenomena such as leukocyte
margination.
Keywords: boundary integral method, finite element method, capsule flow, lateral
migration.

1 Introduction

Red blood cells (RBCs) have been observed to exhibit higher deformability than
other cells in the blood, such as white blood cells (WBCs) [1]. Furthermore, while
the concentration of RBCs in microcirculation is highest near the center of the
vessel, WBCs are found disproportionately near the vessel wall, particularly at
low shear rates [2]. Several mechanisms have been proposed for this difference in
lateral migration, such as an exclusion effect by the RBCs on a WBC, as well as
hydrodynamic forces.
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Previous theoretical studies on lateral migration near a plane wall were
performed by Chaffey et al. [3] and Chan and Leal [4]. They found that, for a
liquid drop, the rate of lateral migration depends on the drop deformation, the
distance from the wall, and the viscosity ratio. The influence of these factors have
been investigated numerically for a liquid drop [5,6], but little work has been done
thus far on other types of particles.

Here, we focus on the effect of a plane wall on the migration of a capsule, or a
liquid drop bound by a hyperelastic membrane. A capsule is a better model for a
cell, particularly an RBC, due to the presence of a spectrin network that provides
an elastic character to the RBC membrane. In addition, the characteristics of the
phospholipid bilayer membrane, orders of magnitude thinner than the radius of
the cell and resistant to area expansion, allow the membrane to be modeled as a
two-dimensional material that is nearly incompressible. We focus on two types of
capsules: initially spherical and initially biconcave. In addition, we consider the
effect of varying flow conditions, quantified using the capillary number (Ca), and
the initial orientation of the biconcave capsule.

Since only the capsule membrane and the wall are of interest, a boundary
integral method (BIM) is employed, using the Green’s function for a semi-
infinite flow developed by Blake [7]. In addition, to track the deformation of the
membrane, the surface is discretized and solved at each step using a constitutive
law and the finite element method (FEM).

2 Method

The numerical method, a coupling of the boundary integral method and finite
element method, was developed by Walter et al. [8] to simulate the motion of
capsules in an infinite shear flow.

In this method, a constitutive law for a two-dimensional hyperelastic material is
used to calculate the tension in the capsule membrane. The equilibrium between
membrane tension and viscous traction of the inner and outer fluids is given by a
variational approach. From the viscous traction, the velocity of the membrane is
computed using the boundary integral equation.

2.1 Algorithm

To consider the motion of a red blood cell and an equivalent spherical capsule, the
Skalak constitutive law [9] is employed. The strain energy function for the Skalak
law is given by

ws =
Gs

2

(
I2
1 + 2I1−2I2 +CI2

2

)
, (1)

where Gs is the surface shear modulus and C represents the resistance to area
dilation. For a spherical capsule, the value C = 1 is used, but since the red blood
cell membrane is nearly incompressible, the area dilation modulus is increased to
C = 10.
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The membrane tension is written in terms of the strain energy by the relation

T =
1
Js

Fs · ∂ws

∂e
·Fs

T , (2)

where Js is the area dilation ratio, Fs is the surface deformation gradient tensor, and
e is the Green-Lagrange strain tensor. From the membrane tension, the equilibrium
on the surface of the capsule is determined by the equation

∫
S
û ·qdS =

∫
S
ε̂s : TdS, (3)

where û is a virtual displacement that gives a virtual strain ε̂s, and q is the viscous
traction on the membrane. This equation is solved by discretization into a linear
system.

The velocity of the capsule surface in terms of the viscous load is given by the
boundary integral equation,

v(x0) = v∞(x0)− 1
8πµ

∫
S
J(x0,x) ·q(x)dS, (4)

where v is the velocity at a nodal point x0, v∞ is the undisturbed flow, µ is the
viscosity of the fluid, and J is the Green’s function for a semi-infinite fluid given
by Blake [7]. Here, the undisturbed flow v∞ is a simple shear flow with a shear
rate γ̇.

2.2 Numerical conditions

A schematic of the initial conditions for a spherical capsule, showing the
coordinate system as well as the key parameters, is shown in figure 1.

The lengths in this computation, such as the initial distance from the wall h,
are scaled by the radius a. For an initially spherical capsule, a is equal to the

Figure 1: Schematic of computation.
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Figure 2: Initial orientations of biconcave capsules. Shear direction points to the
right.

initial radius, whereas for a non-spherical capsule, a is the radius of a spherical
capsule with the same volume as the non-spherical capsule. A parameterization of
the resting shape of an RBC is given by Evans and Fung [10], with the major axis
L1 in the initial state set to 1.386a [11].

Since inertial effects are neglected, the flow condition is given by the capillary
number,

Ca =
µγ̇a
Gs

(5)

which shows the relative strengths of the viscous and elastic forces.
In addition, the initial orientation of the RBC is rotated in the direction such that

the axis of rotation is parallel to the wall, as shown in figure 2. The position on the
left hand side of figure 2 is given by the angle θ0 = 0, and the RBC is rotated π/4
and π/2 to give middle and right positions, respectively.

3 Results

The length of the major axis in the shear plane normalized by the radius, L1/a, is
used to quantify the deformation of the capsules. In addition, the deformation, as
well as the lift velocity, are compared using the average major axis length in an
infinite flow, L∞

1 /a.

3.1 Deformation

In figure 3, the deformation of spherical capsules is shown as the capsules move
away from the wall. Two regimes are seen: first, a transient motion occurs as the
capsule is stretched by the discontinuous start of the background flow. After the
transient motion fades, the capsule reaches a quasi-steady state, as the deformation
decreases at smaller rate than at the transient state. Interestingly, as the capillary
number increases, the relative deformation of the capsule in the transient state also
increases.

In figure 4, the deformation of RBCs with varying initial orientation and at
Ca = 1.15 are shown as they move away from the wall. Unlike the spherical
capsules, the RBCs show two distinct deformation profiles that depend on initial
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Figure 3: Deformation of spherical capsules.
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Figure 4: Deformation profile of RBCs.

orientation. When the RBC is initially symmetrical with respect to the shear plane
(θ0 = π/2), it exhibits position-dependent deformation similar to the spherical
capsule. On the other hand, when the RBC is symmetrical in the plane parallel
to the wall (θ0 = 0), it experiences regular oscillations in its deformation profile,
with a lower averaged value than the θ0 = π/2 case. The RBC with an initial
orientation of θ0 = π/4 shows a combination of these two patterns; it exhibits
regular oscillations in deformation, but with an average magnitude close to that of
the θ0 = π/2 case.

In figure 5, the peak relative deformations of the RBCs shown in figure 4 and a
capsule at Ca = 1.2 are plotted together. The capsule and the RBC with an initial
orientation of θ0 = 0 show a linear dependence between the peak and steady state
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Figure 5: Peak deformation of a spherical capsule and RBCs.

deformations. On the other hand, the RBCs at θ0 = π/4 and θ0 = π/2 only show a
linear dependence on the steady state deformation at a high peak deformation. At
lower deformations, the peak deformation of these RBCs is nearly constant with
respect to the steady state deformation.

3.2 Lift velocity

The lift velocity is defined as the velocity at which the capsule separates from the
wall. Previous studies [3,4] have predicted that a liquid drop exhibits a lift velocity
proportional to (a/x3)2 at distances far from the wall.

To confirm whether the lift velocity of an initially spherical capsule shows the
same dependence on (a/x3)2, the lift velocities for initially spherical capsules with
varying initial positions are plotted on a log-log scale in figure 6. At distances far
from the wall, the lift velocity of an initially spherical capsule approaches the
(a/x3)2 line, but the lift velocity decays slower than (a/x3)2 at the values shown
here. The rate of decay of the lift velocity decreases with decreasing capillary
number. In addition, while the lift velocity at a quasi-steady state is proportional to
the capillary number, the peak velocity of a capsule close to the wall is inversely
proportional to the capillary number.

Figure 7 shows a spherical capsule with capillary number Ca = 1.2 and RBCs
with a capillary number Ca = 1.15 with varying initial orientations. RBCs show a
lift velocity profile that is nearly independent on the initial orientation and overlaps
well with a capsule at a similar capillary number. Like the spherical capsule, the
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Figure 6: Lift velocity of spherical capsules.
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Figure 7: Lift velocity of a capsule and RBCs.

dependence of the lift velocity on the distance from the wall approaches (a/x3)2 at
distances far from the wall, but as the RBC is moved closer to the wall, the decay
of the lift velocity is slower than (a/x3)2.

4 Discussion

In the range of capillary numbers shown in figure 3 and figure 6, a change in
deformation results in only a modest change in lift velocity for a spherical capsule.
A smaller change in the lift velocity occurs between Ca = 1.2− 2.4 than that
between Ca = 0.4−1.2. This can be explained by the observation that the change
in deformation with respect to capillary number decreases as the capillary number
increases. Since no lateral migration in low Reynolds number Couette flow is
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observed to occur for rigid spheres [12], the most significant variation in lift
velocity is expected to occur at lower capillary numbers.

Both qualitative and quantitative changes in peak deformation between a
spherical capsule and RBCs with different initial orientations are shown in figure 5.
Despite these differences, the lift velocity profiles shown in figure 7 indicate that
the transient deformation of a capsule, as well as its initial shape, had little effect
on its rate of lateral migration. It seems that the steady state deformation of a
spherical capsule determines the lift velocity of a capsule with the same capillary
number, regardless of its initial shape.

While cells such as RBCs and WBCs occupy the same external flow conditions,
RBCs exhibit much higher deformability than WBCs. In other words, an RBC can
be said to have a higher capillary number in the same flow as a WBC; thus, from
this data, it is likely that RBCs experience a higher lift velocity than WBCs in the
same external flow conditions. This is only one factor behind the mechanism of
WBC margination; for example, the shear gradient present in a blood vessel is not
examined here.

5 Conclusion

The deformation and lift velocity of spherical and biconcave capsules, models for
WBCs and RBCs, were presented. While the peak and quasi-steady deformation
profiles of capsules depend on initial shape, initial orientation, and capillary
number, the lift velocity is not strongly affected by these transient effects. In
addition, the lift velocity only shows strong dependence on capillary number at low
Ca. A difference in lift velocity between RBCs and WBCs may exist at sufficiently
low capillary numbers, such as in microcirculation, and may be a factor in the
initial margination of WBCs.
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