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Abstract

In this paper we focus on oscillation and instability of the solution of the
convective-diffusive equation depending on the Peclet number. For that purpose,
different types of mesh elements and shape functions have been used. For the
stabilization of the solution of the convective-diffusive equation for high Peclet
numbers, we employed high-order polynomial shape functions, namely residual-
free bubble functions. The numerical scheme is based on BEM. For solving
the linear homogeneous part of the partial differential equation, the Laplace
fundamental solution has been used.

We compared quadratic nine-node domain element using Lagrangian shape
functions, linear four-node domain element using Lagrangian shape functions and
linear four-node domain element using fourth-order bubble enriched functions.
Numerical results obtained with linear Lagrangian shape function and bubble
enriched functions are compared with the analytical solution.

Residual-free bubble functions add stability to simulation and despite the fact
that less nodes are used in the domain element, the results are comparable and
in some cases even better than the quadratic nine-node domain element. The
boundary element method with usage of bubble-enriched functions can resolve
problems of convective-diffusion and obtain stable and accurate solutions for this
type of governing equations, which are being represented in several types of
transport phenomena.
Keywords: boundary element method, residual free bubble, upwinding techniques,
convective-diffusion equation.
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1 Introduction

It is known that the solution of the convective-diffusive equation for high Peclet
numbers is unstable for standard numerical schemes. Samec and Škerget [1]
focused on numerical solution of a diffusive-convective transport equation for
reacting flows based on boundary-domain integral formulation for diffusion-
convective fundamental solution. Nassehi and Parvazinia [2] studied instabilities
of convective-diffusion equations using a variational multiscale finite element
scheme. They used discretization based on the utilization of bubble function
enriched finite elements. Residual free bubble method for stability of convection-
diffusion problems was further used by Franca et al. [3]. They used the Galerkin
finite element method for partial differential equations in two dimensions and
the finite-dimensional space consists of piecewise polynomials enriched with
bubble functions. Furthermore, Franca and Nesliturk [4] employed two-level finite
element method with combination of enriched residual-free bubble functions for
simulation of Navier-Stokes equations for incompressible fluid.

2 Governing equations

2.1 Diffusion-convective equation

Steady state nonlinear diffusion-convective equation [5], which describes time
independent transport, can be written as

Pej
∂T

∂xj
=

∂2T

∂xj∂xj
in Ω, (1)

where Pej is the Peclet number defined with velocity component vj , characteristic
length scale h and diffusivity α as Pej = vj l

α . The variable T (�r) can be used as
a temperature in heat transfer problems, concentration in dispersion processes or
vorticity in fluid dynamics.

Equation (1) can be treated as a nonhomogeneous linear elliptic Poisson’s type
of partial differential equation (PDE), therefore we may write

L [T ] + b =
∂2T

∂xj∂xj
+ b = 0 in Ω. (2)

In equation (2) L [·] represent linear elliptic Laplace differential operator and b
represents pseudo body force for convective term.

We can formulate corresponding boundary-domain integral by applying a
weighted residual technique by Green’s theorems for scalar functions. The Green’s
function is known function of a geometry capturing only the diffusion of the
transport process. Thus, we rewrite equation (2)

c(ξ)T (ξ) +
∫
Γ

Tq∗dΓ =
∫
Γ

qT ∗dΓ −
∫
Ω

Pej
∂T

∂xj
T ∗dΩ, (3)
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where ξ is the source point, T ∗ is the fundamental solution of the Laplace operator
and q∗ its gradient. q is the function flux. In convective term, the domain integral
involves the partial derivatives of the field function T . In order to eliminate the
derivative, we use the Gaussian divergence theorem on the convective domain
integral. Thus the divergence operator is shifted to the fundamental solution, we
may write an integral formulation without derivatives of fields function in domain
integral as:

c(ξ)T (ξ) +
∫
Γ

Tq∗dΓ =
∫
Γ

qT ∗dΓ −
∫
Γ

TPenT ∗dΓ +
∫
Ω

TPejq
∗
j dΩ. (4)

In equation (4) q∗j is defined as q∗j = ∂T∗
∂xj

and Pen is Peclet number calculated
with normal velocity component to the boundary and defined as vn = �v · �n.

2.1.1 Discretization
We write the corresponding boundary-domain integral in a discretized form
for the numerical solution of diffusion-convective equation. Integrals over the
boundary and domain are approximated by a summation of integrals over
individual boundary elements and internal cells respectively. Thus we may write
discretization for linear integral statement (4) as

c(ξ)T (ξ) +
E∑

e=1

∫
Γe

Tq∗dΓ =
E∑

e=1

∫
Γe

qT ∗dΓ −
E∑

e=1

∫
Γe

TPenT ∗dΓ

+
C∑

c=1

∫
Ωc

TPejq
∗
j dΩ, (5)

where E is number of boundary elements and C is a number of internal cells.
The product of field function for each boundary element or internal cell may be

approximated with shape functions. We employed boundary shape functions ΦBi

and Φi and domain shape functions φBi yielding

c(ξ)T (ξ) +
E∑

e=1

∫
Γe

∑
i

ΦBiTiq
∗dΓ =

E∑
e=1

∫
Γe

∑
i

ΦiqiT
∗dΓ

−
E∑

e=1

∫
Γe

∑
i

ΦBi(TPen)iT
∗dΓ +

C∑
c=1

∫
Ωc

∑
i

φBi(TPej)iq
∗
j dΩ. (6)
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3 Numerical method

3.1 Setting up the system of equations

For numerical method, we used macro element BEM [6]. We solve equation (6)
for each mesh element. In each quadratic element with quadratic interpolation for
function and linear for fluxes, there are 9 nodes for function and 8 nodes for fluxes,
see Figure 1 left. For setting up the system of equation, the source point is set in
all of those nodes (9 + 8 = 17). For that type of cell (quadratic interpolation for
function and linear for fluxes) we have together 17 equation for each domain cell.
Since we want to reduce size of matrixes, we introduce four-sided element with
linear interpolation for functions and constant for fluxes. That type of cells has 4
nodes for functions and 4 nodes for fluxes, see Figure 1 right. Thus, we get instead
of 17 only 8 equation for each cell. For compensation of disadvantages of linear
4 node cell, for functions, in comparison with quadratic 9 node cell, we introduce
upwinding method, which from computational aspect of view, obtain same number
of equations as linear interpolation and require same memory space.

Because neighbouring cells share nodes and boundary conditions on the other
boundaries of the domain are prescribed, we get an overdetermined system of
equations. For that reason we used in our numerical algorithm least squares manner
solver.

Figure 1: Left: four-sided cell with quadratic interpolation for functions and linear
for fluxes. Right: four-sided cell with linear interpolation for functions
and constant fluxes.

3.2 Shape functions

We obtain two-dimensional domain Ω with one-dimensional boundary Γ. Domain
is split into domain cells and boundary into boundary elements [7, 8].

3.3 Upwinding techniques

For the purpose of stabilization of boundary element solution we decide to
employ one of few upwinding methods [9]. Over time, various methods, which
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can stabilize numerical solution have been developed: streamline upwind Petrow-
Galerkin method (SUPG), direct static condensation method (STC), Galerkin least
squares method (GLS) and residual free bubble method (RFB).

3.3.1 Residual free bubble (RFB)
Bubble functions are typically high-order polynomials, which are effective within
an element or cell, but their effect vanishes at the element boundaries. RFB
functions are derived via the analytical solution of these equations in conjunction
with boundary conditions, and should be strongly satisfy them within each
element. Thus, the derivation of the bubble functions for a given problem is based
on the analytical solution of its governing differential equation posed within each
element.

RFB shape functions are linear, i.e. they require two node per mesh element.
Their shape is determined by the Peclet number. For zero Peclet number Pe = 0,
they revert back to linear Lagrangian shape functions. For non-zero Peclet number
Pe �= 0 their shape is governed by the analytical solution of convective-diffusion
equation.

The RFB shape functions can be used to interpolate function value within a
mesh element using

T (ξ) = T1 · ΦB1(ξ) + T2 · ΦB2(ξ), (7)

where ξ is the local coordinate system.

3.3.2 Derivation of shape functions
We can write two-dimensional convective-diffusion equation (1) in a non-
dimensional form in planar (x, y) coordinate system as

Pex
∂T

∂x
+ Pey

∂T

∂y
− ∂2T

∂x2
− ∂2T

∂y2
= 0. (8)

Values of equation (8) at nodal points provide analytically obtained shape
functions ΦB1 and ΦB2. If we substitute T with ΦB1 and ΦB2, we get

− d2ΦB1

dx2
+ Pej

dΦB1

dx
= 0 for x ∈ [0 − l] ,

ΦB1(0) = 1, ΦB1(l) = 0 (9)

and

− d2ΦB2

dx2
+ Pe

dΦB2

dx
= 0 for x ∈ [0 − l]

ΦB2(0) = 0, ΦB2(l) = 1, (10)
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where l is the element length. Using local coordinate system, solution of above
equations can be derived into bubble shape functions

ΦB1 =
ex Pe − el Pe

1 − el Pe
, ΦB2 =

1 − ex Pe

1 − el Pe
. (11)

We expand the exponential function ex in to a Taylor series as:

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . (12)

Bubble functions are sum of Lagrangian shape functions ΦL and enriched
appendix ΦE , ΦB = ΦL + ΦE . We keep only the first three terms in Taylor series
expansion. Thus we can, with introduction of local coordinate system ξ(−1, +1)
and defining x = l

2 (1 + ξ), write bubble shape function of second-order as

ΦB1 =
1
2
(1 − ξ) − (b(1 − ξ2)), ΦB2 =

1
2
(1 + ξ) + (b(1 − ξ2)), (13)

where b is defined as

b =
lP e

8(1 + 0.5lP e)
. (14)

Alternatively, keeping first five terms instead of three in Taylor series expansion
we get fourth-order bubble shape functions

ΦB1 =
1
2
(1 − ξ) − (b1(1 − ξ2) + b2(1 + ξ)(1 − ξ2) + b3(1 − ξ2)2),

ΦB2 =
1
2
(1 + ξ) + (b1(1 − ξ2) + b2(1 + ξ)(1 − ξ2) + b3(1 − ξ2)2), (15)

where parameters b1, b2 and b3 are defined as

b1 =
1
2!Pe2l2 + 1

3!Pe3l3 + 1
4!Pe4l4

4
(
Pel + Pe2l2

2! + Pe3l3

3! + Pe4l4

4!

) ,
b2 =

1
3!Pe3l3 + 1

4!Pe4l4

8
(
Pel + Pe2l2

2! + Pe3l3

3! + Pe4l4

4!

) , (16)

b3 =
1
4!Pe4l4

16
(
Pel + Pe2l2

2! + Pe3l3

3! + Pe4l4

4!

) .
Analogously to the above derivation of RFB shape functions for boundary

element ΦBi, we derive RFB shape functions for domain cell φBi.
In described two-node linear element, the sign of bubble coefficient is different

for the beginning and end nodes. The opposite signs of the bubble functions affect
the convection term in the convective-diffusion equation and consequently on the
scope of bubble function. Figure 2 shows 2 node boundary element, enriched with
residual free bubble function of 4th order.
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Figure 2: Bubble enriched shape function.

4 Numerical tests

4.1 Entry flow problem

We tested our numerical scheme on entry flow problem. For entry flow problem
we defined following boundary conditions: uniform velocity on whole domain,
temperature T = 1 on the inlet, T = 0 on the outflow and adiabatic boundary
conditions dT/dy = 0 on the upper and lower plate. Boundary conditions are
shown in Figure 3.

dT dy 0

dT dy 0

v
x

1

dT/dy = 0

dT/dy = 0

P
e y

=
0,

P
e x

T
=

0

T
=

1

x

y

Figure 3: Boundary conditions for entry flow problem. Value of Pex determines
the problem.

4.2 Results

We compared quadratic nine-node domain element using Lagrangian shape
functions, linear for-node domain element using Lagrangian shape functions and
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Table 1: Meshes used in calculation. Meshes are concentrated towards the right
side of the domain. Geometric sequence is used where R is the ratio
between longest and shortest element.

mesh nodes x direction R

1 41 16

2 81 16

3 161 16

4 81 4

5 41 4

linear four-node domain element using fourth-order bubble enriched functions
using five different meshes. The details of meshes are given in Table 1. Numerical
results obtained with ordinary Lagrangian shape function and bubble enriched
functions are compared with the analytical solution. In Figure 4 there are results
for mesh 2 for Peclet numbers Pex = 20, Pex = 50 and Pex = 200. The
calculated functions accuracy was compared with the analytical values. Due to
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Figure 4: Results for mesh 2, for Peclet number Pex = 20 (upper left), Pex = 50
(upper right) and Pex = 200 (lower).
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high accuracy of the results the different approaches are almost indistinguishable.
Thus we introduced the root mean square (RMS) error as:

RMSerror =

√∑
i(Ti − ai)2∑

i a2i
(17)

where Ti is the calculated value in node i and ai is the analytical value in node i.
Further Figures shows RMS error for different meshes, Peclet numbers and

shape functions. Figures 5, 6, 7 show dependence of functions RMS errors for
Peclet number Pex = 20, Pex = 50, Pex = 200, respectively. The results
show decrease of the RMS error with increasing of mesh density. The poorest
results are obtained by the Lagrange four node elements. The bubble enriched
linear four node elements increase the accuracy for approximately one order of
magnitude for the smallest Peclet number. The improvement caused by the bubble
enriched elements is less prominent in the case of higher Peclet number values. The
quadratic Lagrange nine node elements yield approximately the same accuracy as
the bubble enriched linear elements. From results it can be seen, that the residual-
free bubble functions add stability to simulation of the entry flow problem.

5 Conclusions

Boundary element method with usage of bubble-enriched functions can resolve
problems of convective-diffusion and obtain stable and accurate solutions for
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R
M

S
er

ro
r

1 2 3
10-5

10-4

10-3

10-2

Lagrange 4 node
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Lagrange 9 node

Figure 5: Dependence of functions RMS error to different meshes for Peclet
number Pex = 20.
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Figure 6: Dependence of functions RMS error to different meshes for Peclet
number Pex = 50.
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Figure 7: Dependence of functions RMS error to different meshes for Peclet
number Pex = 200.

this type of governing equations, which are being represented in several types
of transport phenomena. In the future research, we aim to spread our work on
fluid flow simulation. For that purpose we can employ approximate residual-free
bubble functions based on polynomial bubble functions. We trust, that combination
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of residual free bubble and convective-diffusion Green’s fundamental solution is
the most appropriate for solving transport problems where convective respectively
hyperbolic part of equation predominate. The mesh compression ratio R also
affects the accuracy of the results. It should be chosen appropriately according
to the Peclet number and expected function gradients.
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