
Dynamic simulation of heat conduction  
using a BEM model in the frequency domain:  
an experimental validation 

I. Simões1, N. Simões1, A. Tadeu1 & M. Reis2 
1CICC, Department of Civil Engineering, Faculty of Sciences and 
Technology, University of Coimbra, Portugal  
2Department of Fortification and Construction Engineering, Military 
Institute of Engineering, Rio de Janeiro, Brazil 

Abstract 

The heat transfer by conduction across a system containing heterogeneities, 
when subjected to unsteady conditions, is simulated using a boundary element 
method (BEM), formulated in the frequency domain. The proposed formulation 
is validated experimentally.  
     In the laboratory tests a steel inclusion was embedded in a confined host 
medium and unsteady temperatures were applied to its boundary. The thermal 
properties of the host media tested (molded expanded polystyrene) has been 
previously defined experimentally. The results showed that the BEM solutions 
agree well with the experimental results. 
Keywords: conduction, transient heat transfer, BEM; experimental validation, 
frequency domain, Green’s functions. 

1 Introduction 

As the analytical solutions for simulating heat diffusion are only known for very 
simple geometric and material conditions, such as homogeneous full spaces, 
half-spaces and circular cylindrical inclusions, various numerical techniques 
have been proposed for more complex problems. Unsteady state conditions can 
be split into three formulation groups: time domain; transformed domain, by 
applying the Laplace transform, and frequency domain, by applying a Fourier 
Transform.  
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     In the frequency domain technique, a Fourier transform applied in the time 
domain deals with the time variable of the diffusion equation to establish a 
frequency domain technique; time solutions are obtained by using inverse 
Fourier transforms into time-space. The time-aliasing phenomenon is avoided by 
using complex frequencies to attenuate the response at the end of the time frame. 
This effect is later taken into account by re-scaling the response in the time 
domain [1].  
     The BEM is usually one of the tools for modelling heat transfer in 
heterogeneous media, requiring only the discretization of the inclusions’ 
boundaries. Hohage and Sayas have proposed a numerical solution of the heat 
diffusion problem using the BEM applying the Laplace transform [2]. Other 
authors study the transient heat conduction with BEM, for example, Ma et al. [3] 
and Wang et al. [4]. Indeed, Tadeu et al. have recently proposed an algorithm 
that couples the BEM and the method of fundamental solutions (MFS) to study 
transient heat diffusion by conduction across heterogeneous media containing 
thin inclusions [5]. 
     In this work, it is described the experimental validation of a BEM formulation 
for studying unsteady heat transfer by conduction, across a system containing 
heterogeneities. After a brief description of the BEM formulation, the model is 
validated against experimental results. The laboratory test setup is briefly 
described. 

2 Boundary element method formulation 

For simplicity, consider an unbounded medium (Medium 1) with an embedded 
inclusion (Medium 2), bounded by a surface S, as illustrated in Figure 1). Null 
fluxes and prescribed temperatures 0 ( )T t  are imposed along the boundary 

sections 1S  and 2S , respectively, while continuity of temperatures and heat fluxes 

are assumed along the remaining part of the boundary, 3S , ( 1 2 3, ,S S S S ). 
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Figure 1: Geometry of the problem. 

     The transient heat transfer by conduction is governed by the equation 

 

2 2
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(1) 
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in which t  is time, ( , , )T t x y  is temperature,  K c   is the thermal 

diffusivity,  is the thermal conductivity,  is the density and c  is the specific 
heat.  
     To solve this equation we move from the time domain to the frequency 
domain by applying a Fourier transformation in the time domain to eqn (1). 
Performing the integration by parts, we get 

 

2 2
2

2 2
ˆ( , , ) 0k T x y

x y  
  

       
(2) 

where i

0

ˆ ( , , ) ( , , ) tT x y T t x y e dt


  , ik K   , i 1   and   is the 

frequency.  
     The boundary integral equation can be constructed by applying the reciprocity 
theorem [6], leading to 
a) along the exterior domain of the inclusion (Medium 1): 
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b) along the interior domain of the inclusion (Medium 2): 
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(4) 

     In these equations, the superscripts (1) and (2) refer to the exterior and 
interior domains respectively, n  is the unit outward normal along the 

boundary, G  and H  are respectively the fundamental solutions (Green’s 

functions) for the temperature ( T̂) and heat flux (q), at  ,x y  due to a virtual 

point heat load at  0 0,x y . The factor c  is a constant defined by the shape of the 

boundary, taking the value 1/2 if the shape is smooth and
  0 0 1,x y S  

or 

 0 0 3,x y S .  

     The required Green’s functions for temperature and heat flux in Cartesian 
coordinates are given by  
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(6) 

in which    2 2

0 0r x x y y     and  nH  are Hankel functions of the second 

kind and order n .  
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     The final system of equations was assembled so as to ensure the continuity of 
temperatures and heat fluxes along 3S .  This requires the discretization of the 

interface S. The unknown nodal temperatures and heat fluxes were obtained by 
solving this system of equations, allowing the heat field in the domain to be 
defined. 
     The integrations in eqns (3) and (4) were evaluated using a Gaussian 
quadrature scheme when the element to be integrated is not the loaded element, 
while for the loaded element, the existing singular integrands in the source terms 
of the Green’s functions were calculated in closed form (see Tadeu et al. [7]).  

3 Experimental validation 

The results provided by the BEM model were compared with those obtained 
experimentally using two systems comprising a steel inclusion embedded in a 
confined homogeneous medium, when subjected to unsteady heat flow rates. 
Thermocouple sensors connected to a data logger system are used to record the 
temperature change within the test specimen. The measurements were later 
compared with those computed by the BEM model using as input data the 
external surface temperature changes and the thermal properties of each material, 
which were obtained experimentally. 

3.1 Experimental tests  

The system measured 500x500 mm2, was 48 mm thick and hosted a steel 
element measuring 330x50 mm2, by 16 mm thick (see Figure 2). The host media 
was molded expanded polystyrene (EPS). This material was characterized 
beforehand to determine its thermal conductivity (found by the Guarded Hot-
Plate Method ) (ISO 8302:1991 [8], following the test procedure defined in 
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Figure 2: Measurement zone of specimens tested and position of 
thermocouples: a) plane view; b) cross section. 
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EN 12667:2001 [9]), mass density (EN 1602:1996 [10]) and specific heat 
(following the ratio method), with at least three measurements. Table 1 lists 
those properties, and they were used in the numerical simulations. 

Table 1:  Materials’ thermal properties. 

Material 
Conductivity, k 

-1 -1(W.m .ºC )  
Mass density, 
 -3(kg.m )  

Specific heat, 
c

-1 -1( J.kg .ºC )  

Molded Expanded 
Polystyrene (EPS) 

0.040 14.3 1430.0 

Steel 53.0 7850.0 450.0 
 
     The experimental system was subjected to an unsteady heat flow rate imposed 
by a single-specimen Lambda-meter EP-500 apparatus (see Figure 3). Before 
running any test, the specimen was conditioned in a climatic chamber, Fotoclima 
300EC10 from Aralab, in a controlled environment with a set-point temperature 
of (232) ºC and (505) % of relative humidity, until constant mass was reached. 
These were also the conditions in the room environment where tests were run. In 
the unsteady measurement test the single-specimen Lambda-meter EP-500 was 
first programmed to reach a temperature of 23ºC in the middle of the test 
specimen, establishing a 15ºC temperature difference between the heating and 
the cooling units. The equipment ensures null heat flows across lateral sides in 
contact with the room environment. The energy input was supplied until a 
permanent heat flow rate was reached. Then, the heating and cooling units were 
switched off and the system was allowed to regain energy equilibrium with the 
room environment. 
 

 

Figure 3: Single-specimen Lambda-meter EP-500 apparatus with a tested 
system inside. 
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     The temperature variation at each selected point (see Figure 2) was measured 
using type T (copper) thermocouples made of 0.2 mm diameter wire, placed on 
each outer surface of the system, on the top and bottom of the inclusion 
interface, and in the host material. The data were recorded using a Yokogawa 
MW 100 data logger, with a time interval of 10 seconds. 

3.2 BEM simulation 

In the BEM simulation, the temperatures recorded by thermocouples on the top 
surface – 0 tT – and the temperatures registered in bottom plate – 0bT – were first 

transformed to frequency domain by applying a direct discrete fast Fourier 
transform in the time domain. Note that those temperatures were reduced by 
subtracting the initial test temperatures.  
     Afterwards the heat field was computed in the frequency domain. The system 
was computed in the frequency range 0.0 Hz  to 0.028635 Hz, with a frequency 

increment of  -51 .3982 10  Hz , which determined a full analysis window of 19.9 h. 
The responses were computed at the eight receivers that were in the same tested 
positions as the thermocouples. 
     The temperature in the time domain was found by applying a discrete inverse 
fast Fourier transform in the frequency domain.  The aliasing phenomena were 
dealt with by introducing complex frequencies with a small imaginary part, 
taking the form ic     (where 0.7   , and   is the frequency 

increment). This shift was subsequently taken into account in the time domain by 
means of an exponential window, e t , applied to the response.  
     The final temperatures were obtained by adding the initial test temperatures to 
these responses. 

3.3 Comparison of the results 

The experimental measurements were presented and compared with the results 
computed with the BEM formulation. In the figure below the solid lines are the 
BEM responses while the experimental measurements are represented by the 
lines with marked points. Temperature changes at the 8 receivers are plotted in 
Figure 4 for a time window of 16 hours. Higher and lower temperature lines are 
related to the top and bottom temperature surfaces that were used as input data 
for the BEM simulations.   
     Analyses of these responses show a good agreement between the BEM 
responses and the experimental results.   
     All thermocouples and simulation receivers exhibit similar initial 
temperatures of around (232) ºC – temperature in the room. Once the apparatus 
has started emitting energy, the top and bottom surfaces register a change of 
temperature so that a difference of 15ºC is established between them. This 
difference is maintained until a steady state is achieved. 
     Observing the behavior at a cross-section through the middle of the steel 
inclusion (see Tc2, Tc6, Tc3 and Tc1), very small temperature differences are 
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found between Tc3 and Tc6, since steel allows higher heat flow rates than the host 
media. Tc4 and Tc7 at the corners of the steel show higher temperature differences 
but lower than Tc5 and Tc8, which are further away from the steel inclusion.  
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Figure 4: Temperature curves plotted for the experimental measurements and 
the BEM simulations. 

     Given the thermal property differences between the materials used in each 
system, we would underline the good agreement that was found between the 
experimental measurements and results obtained with the BEM model.  Thus, the 
BEM algorithm based on a frequency domain formulation may be considered 
adequate to simulate the heat transfer in heterogeneous systems. 

4 Conclusions 

A BEM model has been implemented and used to compute the two-dimensional 
transient heat conduction in heterogeneous systems. This model is based on a 
frequency domain formulation: a Fourier transform applied in the time domain 
was the technique used to deal with the time variable of the diffusion equation. 
The heat field was established by imposing the continuity of temperature and 
heat fluxes at the interfaces of the heterogeneities while verifying the exterior 
boundary conditions.  
     The BEM model was verified and validated by comparing its solutions with 
analytical solutions and experimental measurements. The experimental 
validation used one parallelepiped heterogeneous system composed of a steel 
inclusion embedded in molded expanded polystyrene. Temperature variations 
were imposed at the top and bottom exterior surfaces and null heat fluxes at the 
lateral surfaces of the systems. We can conclude that when the thermal 
proprieties of the materials are known the proposed BEM formulations in the 
frequency domain may be considered consistent for the purpose of studying 
transient heat conduction in systems with heterogeneities. 
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