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Abstract 

The least square method was used to solve an overdetermined system of 
equations in a boundary element formulation, which had the number of integral 
equations greater than the number of nodes. The solution with the least square 
method was so good that a regular solution would present similar accuracy only 
if a fine mesh was used (i.e. double the number of nodes.)The analysis 
considered the traction boundary integral equation (BIE) to solve a plate bending 
problem instead of the displacement BIE. Two formulations for traction BIEs 
were considered, which had the strong singularity reduced with the tangential 
differential operator (TDO). The strong singularity was reduced in the first 
formulation without changing other fundamental solution kernels. In the second 
formulation, the TDO was applied to all fundamental solution kernels involving 
the multiplication of generalized displacements to reduce the singularities, and 
the resulting kernels were combinations of those from the displacement BIE. 
Keywords: least square solution, traction boundary integral equation, plate 
bending, Reissner’s model, Mindlin’s model. 

1 Introduction 

Traction BIEs are important when an additional boundary equation is necessary 
in some problems that do not degenerate solutions using displacement BIEs, like 
those used in fracture mechanic problems. Strong singularities appear in the 
fundamental solution kernels of traction BIEs and in stress BIEs at boundary 
points, which are intrinsically related. The collocation point positions, which are 
internal points in the boundary element, and the strategy for treating improper 
integrals are the essential features studied in numerical implementations for 
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traction BIEs in plate bending or elasticity problems [1, 2]. Strong singularities 
in the fundamental solution kernels can be reduced by applying the tangential 
differential operator (TDO) in conjunction with integration by parts, when 
Kelvin-type fundamental solutions are used. Kupradze first presented an 
application using the TDO [3]  and Balas and co-workers presented some 
applications of the TDO in boundary element formulations [4]. Regularized 
boundary element formulations employing TDO for potential and elasticity 
problems, including those for fracture mechanics problems, were presented by 
Bonnet [5]. Plane problems of linear fracture mechanics were analyzed with the 
dual boundary element method using the TDO in the traction BIE [6] and a 
traction BIE formulation with TDO for meshes using non-conformal 
interpolations in three dimensional problems was proposed [7]. 
     A formulation for traction BIE in plate bending, considering the shear 
deformation effect, using the TDO in conjunction with the integration by parts 
was proposed [8]. The existence of two tensors in the plate bending equilibrium 
produces a second formulation for the traction BIE [9]. In the first formulation, 
the strong singularity was reduced whereas the other kernels remained 
unchanged. In the second formulation, all fundamental solution kernels 
multiplying generalized displacements had their singularities reduced with the 
TDO, and the resulting kernels were combinations of those from the 
displacement BIEs. In spite of the fact that the solutions in the boundary element 
method usually employ the displacement BIE, plate bending problems were 
solved with both traction BIEs with the TDO for a better evaluation of their 
behavior [9]. Similar results were obtained in both formulations, which had 
isoparametric linear elements in the numerical implementation and employed 
one collocation point per element in conformal interpolations or two points per 
element in non-conformal interpolations. The number of collocation points in 
each element was defined in the code according to the last node condition, i.e. 
elements with discontinuity at the first node had one collocation point. This 
feature was necessary to avoid the solution of an overdetermined linear system 
of equations. 
     The purpose of the present study is an evaluation of the behavior of both 
formulations for traction BIE with TDO when the number of collocation points 
in each element is always equal to the number of nodes regardless of the 
interpolation type adopted. In spite of the increase in the number of equations, 
the collocation point positions on each element become always symmetric with 
benefits to the symmetry of the results obtained, as previously discussed [9]. 
This strategy produces an overdetermined system of equations when a conformal 
interpolation is introduced in a small region. The least square solution can be 
used to solve the overdetermined system of equations. The matrix obtained from 
the least square solution becomes symmetric and positive definite as an 
additional benefit. A plate bending problem is employed in the present study to 
perform the evaluation of the described strategy using the least square solution. 
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2 Traction boundary integral equations with the tangential 
differential operator 

The equilibrium equations for an infinitesimal plate element under a transverse 
distributed loading q(xi) are first written with Latin indices considering the 
values {1, 2 and 3} and Greek indices considering the values {1, 2}: 
 
ఈఉ,ఉܯ  െ ܳఈ ൌ 0 (1) 
 
 ܳఈ,ఈ ൅ ݍ ൌ 0 (2) 
 
     A unified notation for the Reissner and Mindlin models [8, 9] is used in the 
following constitutive relations: 
 

ఈఉܯ  ൌ ܦ
ሺଵିఔሻ

ଶ
ቀ߰ఈ,ఉ ൅ ߰ఉ,ఈ ൅

ଶఔ

ଵିఔ
߰ఊ,ఊߜáఉቁ ൅  (3) ܧܴݍఈఉߜ

 

 ܳఈ ൌ ܦ
ሺଵିఔሻ

ଶ
ଶ൫߰ఈߣ ൅  ఈ൯ (4),ݓ

with 
 

ଶߣ ൌ 12
ଶߢ

݄ଶ
; ܧܴ ൌ

ߥ
ଶሺ1ߣ െ ሻߥ

 

 
     The plate has a uniform thickness h, D is the flexural rigidity,  is the Poisson 
ratio, w is the deflection, α is the plate rotation in the direction α, and δαβ is the 
Kronecker delta. The product qRE in Equation (3) corresponds to the linearly 
weighted average effect of the normal stress component in the thickness 
direction and should be considered in Reissner’s model but not in Mindlin’s 
model, in which it should be considered to be null. The shear parameter 2 is 
equal to 5/6 and 2/12 for the Reissner and Mindlin models, respectively. 
     A unified displacement BIE for the Reissner and Mindlin models can be 
written in terms of the generalized displacements and tractions presented in [10]: 
 

        ܿ௜௝ሺݔᇱሻݑ௝ሺݔᇱሻ ൅ නൣ ௜ܶ௝ሺݔᇱ, ሻݔ௝ሺݑሻݔ െ ௜ܷ௝ሺݔᇱ, ሻݔሻ൧݀Γሺݔ௝ሺݐሻݔ
୻

ൌ ඵൣ ௜ܷଷሺݔᇱ, ܺሻ െ ௜ܷఈ,ఈሺݔᇱ, ܺሻܴܧ൧ݍሺܺሻ݀Ωሺܺሻ
Ω

 

 
where u equals , u3 equals w, tβ is the product M·nα, and t3 is the product 
Q·n. Uij represents the rotation (j=1, 2) or the deflection (j=3) arising from a 
unit couple (i=1, 2) or a unit point force (i=3), and cij is an element of the matrix 
C related to the collocation point position that makes the diagonal matrix 
elements equal to one for internal collocation points or equal to 0.5 for 

Boundary Elements and Other Mesh Reduction Methods XXXIV  137

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Modelling and Simulation, Vol 53, © 201  WIT Press2

 ((5) 



collocation points on a smooth boundary. The integrand of the domain integral in 
Equation (7) contains the RE factor, which should be considered null for 
analyses using the Mindlin model. 
     The first formulation for traction BIEs, where only the strong singularity is 
reduced with the TDO [8, 9], is given by: 
 

1
2
ᇱሻݔଷሺݐ ൌ ݊ఊᇱ ሺݔᇱሻ ܦ

ሺ1 െ ሻߥ

2
ଶߣ ቌන൛ൣ݊ఈሺݔሻܯଷఈఉ.ሺݔᇱ, ሻݔ െ ఊܶఉሺݔᇱ, ሻݔఉሺݑሻ൧ݔ

୻

൅ ܳଷఉሺݔᇱ, ሻሿݔଷሺݑఊఉሾܦሻݔ െ ఊܶଷሺݔᇱ, ሻቍݔሻൟ݀Γሺݔଷሺݑሻݔ

൅ ݊ఊᇱ ሺݔᇱሻනൣܳఉఊሺݔᇱ, ሻݔఉሺݐሻݔ െ ܳଷఊሺݔᇱ, ሻݔሻ൧݀Γሺݔଷሺݐሻݔ
୻

െ ݊ఊᇱ ሺݔᇱሻඵݍሺܺሻܳଷఊሺݔᇱ, ܺሻ
Ω

݀Ωሺܺሻ

 

1
2
ᇱሻݔఉሺݐ ൌ ݊ఈᇱ ሺݔᇱሻܥఈఉఘఊ ቌන൛ܯఘఎఛሺݔᇱ, ሻሿݔఛሺݑఊఎሾܦሻݔ ൅ ݊ఊሺݔሻܳఘఛሺݔᇱ, ሻݔఛሺݑሻݔ

୻

൅ ݊ఉሺݔሻܳఉ,ሺݔᇱ, ሻቍݔሻሽ݀Γሺݔଷሺݑሻݔ

൅ ݊ఈᇱ ሺݔᇱሻනൣܯଷఈఉሺݔᇱ, ሻݔଷሺݐሻݔ െ ,ᇱݔఊఈఉሺܯ ሻݔሻ൧݀Γሺݔఊሺݐሻݔ
୻

൅ ݊ఈᇱ ሺݔᇱሻඵݍሺܺሻܯଷఈఉሺݔᇱ, ܺሻ
Ω

݀Ωሺܺሻ

൅ ݊ఈᇱ ሺݔᇱሻܴܧඵݍሺܺሻ
߲
߲ܺఊ

,ᇱݔఊఈఉሺܯൣ ܺሻ൧
Ω

݀Ωሺܺሻ

൅
1
2
ఉ݊ܧܴ

ᇱ ሺݔᇱሻݍሺݔᇱሻ                                                               

 
     Dbm( ) is the tangential differential operator and has the following definition: 
 

ሻሿݕ௕௠ሾ݂ሺܦ ൌ ݊௕ሺݕሻ ,݂௠ሺݕሻ െ ݊௠ሺݕሻ ,݂௕ሺݕሻ 
 
     The second formulation for traction BIEs is now written, where all 
fundamental solution kernels multiplying generalized displacements have their 
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 (  

 

(  6)

7)



singularities reduced with the TDO and the resulting kernels are combinations of 
those from the displacement BIE, Equation (5), [9]: 
 

1
2
ᇱሻݔଷሺݐ ൌ ݊ఊᇱ ሺݔᇱሻ ܦ

ሺ1 െ ሻߥ

2
ଶߣ ቌන൛ܯଷఈఉሺݔᇱ, ሻ൧ݔఉሺݑఊఈൣܦሻݔ

୻

൅ ൣ݊ఊሺݔሻܳଷఉሺݔᇱ, ሻݔ െ ఊܶఉሺݔᇱ, ሻݔఉሺݑሻ൧ݔ

൅ ܳଷఉሺݔᇱ, ሻሿݔଷሺݑఊఉሾܦሻݔ െ ఊܶଷሺݔᇱ, ሻቍݔሻൟ݀Γሺݔଷሺݑሻݔ

൅ ݊ఊᇱ ሺݔᇱሻනൣܳఉఊሺݔᇱ, ሻݔఉሺݐሻݔ െ ܳଷఊሺݔᇱ, ሻݔሻ൧݀Γሺݔଷሺݐሻݔ
୻

െ ݊ఊᇱ ሺݔᇱሻඵݍሺܺሻܳଷఊሺݔᇱ, ܺሻ
Ω

݀Ωሺܺሻ

 

1
2
ᇱሻݔఉሺݐ ൌ ݊ఈᇱ ሺݔᇱሻ ܥఈఉఘఊ ቌන൛ܯఘఎఛሺݔᇱ, ሻሿݔఛሺݑఊఎሾܦሻݔ ൅ ݊ఊሺݔሻܳఘఛሺݔᇱ, ሻݔఛሺݑሻݔ

୻

൅ ܳఘఛሺݔᇱ, ሻቍݔሻሿሽ݀Γሺݔଷሺݑఊఛሾܦሻݔ

൅ ݊ఈᇱ ሺݔᇱሻනൣܯଷఈఉሺݔᇱ, ሻݔଷሺݐሻݔ െ ,ᇱݔఊఈఉሺܯ ሻݔሻ൧݀Γሺݔఊሺݐሻݔ
୻

൅ ݊ఈᇱ ሺݔᇱሻඵݍሺܺሻܯଷఈఉሺݔᇱ, ܺሻ
Ω

݀Ωሺܺሻ

൅ ݊ఈᇱ ሺݔᇱሻܴܧඵݍሺܺሻ
߲
߲ܺఊ

,ᇱݔఊఈఉሺܯൣ ܺሻ൧
Ω

݀Ωሺܺሻ

൅
1
2
ఉ݊ܧܴ

ᇱ ሺݔᇱሻݍሺݔᇱሻ                                                               

3 Numerical implementation 

The generalized displacements and their derivatives were assumed to be 
continuous along the boundary in the development to obtain the traction BIEs 
using TDO. Additional terms in Equations (6) to (9) have to be introduced when 
non-conformal interpolations are used and the corresponding equations are given 
by [9]: 
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(  

 

(  8)

9)



1
2
ᇱሻݔଷሺݐ ൌ ሺ6 ݊݋݅ݐܽݑݍܧ ݂݋ ܵܪܴ ݊݋ ݏ݉ݎ݁ݐሻ    

൅ ݊ఊᇱ ሺݔᇱሻ ܦ
ሺ1 െ ሻߥ

2
,ᇱݔଶൣ݁ଷఉఊܳଷఉሺߣ ሻ൧଴ݔଷሺݑሻݔ

୻
 

1
2
ᇱሻݔఉሺݐ ൌ ሺ7 ݊݋݅ݐܽݑݍܧ ݂݋ ܵܪܴ ݊݋ ݏ݉ݎ݁ݐሻ     

൅ ݊ఈᇱ ሺݔᇱሻܥఈఉఘఊൣ݁ଷఎఊܯఘఎఛሺܺᇱ, ሻ൧଴ݔఛሺݑሻݔ
୻

 
1
2
ᇱሻݔଷሺݐ ൌ ሺ8 ݊݋݅ݐܽݑݍܧ ݂݋ ܵܪܴ ݊݋ ݏ݉ݎ݁ݐሻ    

൅ ݊ఊᇱ ሺݔᇱሻ ܦ
ሺ1 െ ሻߥ

2
ଶߣ ቀൣ݁ଷఈఊܯଷఈఉሺݔᇱ, ሻ൧଴ݔఉሺݑሻݔ

୻

൅ ൣ݁ଷఉఊܳଷఉሺݔᇱ, ሻ൧଴ݔଷሺݑሻݔ
୻
ቁ  

 
1
2
ᇱሻݔఉሺݐ ൌ ሺ9 ݊݋݅ݐܽݑݍܧ ݂݋ ܵܪܴ ݊݋ ݏ݉ݎ݁ݐሻ     

൅ ݊ఈᇱ ሺݔᇱሻ ܥఈఉఘఊ ቀൣ݁ଷఎఊܯఘఎఛሺݔᇱ, ሻ൧଴ݔఛሺݑሻݔ
୻

൅ ൣ݁ଷఛఊܳఘఛሺݔᇱ, ሻ൧଴ݔଷሺݑሻݔ
୻
ቁ  

     Linear mapping functions were used to represent displacements and efforts in 
the boundary elements. The same mapping function was used for conformal and 
non-conformal interpolations with nodal parameters always positioned at ends of 
the elements. 
     The continuity for derivatives of displacement functions at the collocation 
point position is required for traction BIEs, Equations (6) to (9). The collocation 
points for traction BIEs were shifted to the interior of the element at a distance of 
a sixth part of its length starting from the end to satisfy the continuity 
requirement because the nodes were always fixed at the element ends. Two 
collocation points per element were used regardless of the interpolation type 
adopted. The collocation points positions (ξ’), in the boundary line, were ±0.67, 
in the range (-1, 1), for continuous or discontinuous elements. 
     Analytical expressions were used to evaluate singular integrals with the 
Cauchy principal value sense whereas the Gauss-Legendre scheme was used for 
regular integrals. An expansion for small arguments was considered for terms 
containing modified Bessel functions with real arguments (K0, K1) [11]. The 
diagonal terms were directly obtained using the mapping function and the 
collocation point position on the element. An overdetermined linear system of 
equations can be obtained when a conformal interpolation is introduced in a 
small boundary region because the number of integral equations becomes greater 
than the number of nodes. 
     The basic method for solving overdetermined systems using least squares was 
employed. Given the system A.x equals b, with an m × n matrix A (m > n), the 
equation had both sides multiplied by the transpose of A. The normal equations 
were obtained, i.e. the standard square system of linear equations. It is necessary 
to point out that any solution of the normal equations is a correct solution to the 
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6b

 ( )7b

 ( )8b

 ( )9b



least squares problem, There is a unique solution in the case when AtA is 
nonsingular and an infinite number of solutions in the case when AtA is singular, 
and all of them are correct solutions to the least squares problem. The present 
analysis employed colocation points positioned in admissible places, i.e. 
collocation points positioned on different places on the boundary, as required for 
a nonsingular matrix, and a unique solution is obtained. Furthermore, the matrix 
obtained from AtA is symmetric and positive definite, as defined for this matrix 
type [13]. 

4 Example: the torsion of cube 

This problem was selected because the non-symmetric condition of the loading is 
better to evaluate the accuracy of the boundary element formulation using 
traction BIEs. The cube has side length equal to 2a, two opposite faces are free 
of stress and other faces are under torsion according to the Saint-Venant 
hypotheses (free warping). The deflection (w) and the plate rotation in the 
direction y (y) were used to introduce torsion according to the prescribed 
rotation angle (): 
 

߰௬ ൌ ߮ܽ; ݓ ൌ  .ݕܽ߮
 
     Three meshes were used in the complete plate model and six Gauss points in 
the numerical integration. Two nodes were considered in each corner and 
conformal interpolations were adopted along the sides for the following meshes: 
128 elements (132 nodes), 192 elements (196 nodes) and 256 elements (260 
nodes). The results were compared with regular solutions using quadratic 
elements [1], in which the traction BIE contained the strong singularity and 128 
discontinuous elements (384 nodes) were used, as well as using linear elements 
[9], in which the traction BIEs used the TDO, beyond the Reissner solution [12]. 
 

 

Figure 1: Torsion of a cube. 

y 

x 
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     The greatest differences to the Reissner solution appeared in the results 
obtained for plate rotations in the normal direction because these values are 
indirectly related to the displacements prescribed. These results were used to 
evaluate the accuracy using the least square solution. The values for distributed 
shear and twisting moments were not used, because they are directly related to 
the displacements constrained and the differences to the Reissner solution were 
extremely low. Values obtained with the first and the second formulation are 
presented in Table 1 and in Table 2, respectively, where the last two rows show 
the maximum difference to Reissner’s solution and the computation time using a 
Dell Latitude D510 (Pentium M, Id. 0608, 1.6GHz). 

Table 1:  Plate rotations in the x direction along the edge ቀ
టೣሺ௬ሻ

టೣሺ௔ሻ
ቁ with the 

first formulation for traction BIE with TDO. 

ݕ
ܽ

 [12] 

Discontinuous 
 elements 

Continuous elements 

128 QE 
384 N 

128 LE 
256 N 

128 LE 
132 N 

192 LE 
196 N 

256 LE 
132 N 

[4] [9] [9] L.S.S. Reg. L.S.S Reg. L.S.S 

1.00 1.000 1.000 1.000 1.000 1,000 1,000 1,000 1,000 1,000 

0.75 -0.055 -0.051 -0.058 -0.056 -0,058 -0,055 -0,056 -0,055 -0,056 

0.50 -0.387 -0.382 -0.389 -0.387 -0,389 -0,386 -0,387 -0,386 -0,387 

0.25 -0.292 -0.290 -0.294 -0.292 -0,294 -0,291 -0,292 -0,292 -0,292 

0.00 0.000 0.000 0.000 0.000 0,000 0,001 0,000 0,000 0,000 

-0.25 -0.292 -0.290 -0.294 -0.295 -0,294 -0,293 -0,292 -0,293 -0,292 

-0.50 -0.387 -0.382 -0.389 -0.391 -0,389 -0,388 -0,387 -0,387 -0,387 

-0.75 -0.055 -0.051 -0.058 -0.060 -0,058 -0,057 -0,056 -0,056 -0,056 

-1.00 1.000 1.000 0.00 1.000 1,000 1,000 1,000 1,000 1,000 

Maximum 
difference (%) 

7.27 5.45 9.09 5,45 3.64 1.82 1.82 1.82 

Computation 
Time (sec) 

- 7.546 4.265 6.844 9.406 16.89 16.55 59,17 

QE = quadratic elements, LE = linear elements, N = nodes, Reg. = regular solution 

 
     The results obtained from the least square solution (LSS) using 128 and 192 
continuous elements (132 and 196 nodes) had similar accuracy and computation 
time to regular solutions using 128 discontinuous elements (256 nodes) and 256 
continuous elements (260 nodes), respectively. In spite of the slightly greater 
computation time in the LSS with 192 elements than the regular solution using 
256 elements, symmetrical results appeared in the LSS. Furthermore, it can be 
pointed out the regular solution with 256 elements is close to the saturation for 
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this problem, as can be noted in the comparison between values obtained from 
the LSS and the regular solution, which presented low differences. 

Table 2:  Plate rotations in the x direction along the edge ቀ
టೣሺ௬ሻ

టೣሺ௔ሻ
ቁ TDO 2. 

ݕ
ܽ

 [12] 

Discontinuous 
 elements 

Continuous elements 

128 QE 
384 N 

128 LE 
256 N 

128 LE 
132 N 

192 LE 
196 N 

256 LE 
132 N 

[4] [9] [9] L.S.S. Reg. L.S.S Reg. L.S.S 

1.00 1.000 1.000 1.000 1.000 1,000 1,000 1,000 1,000 1,000 

0.75 -0.055 -0.051 -0.059 -0.057 -0,059 -0,056 -0,057 -0,056 -0,056 

0.50 -0.387 -0.382 -0.391 -0.389 -0,391 -0,388 -0,389 -0,387 -0,388 

0.25 -0.292 -0.290 -0.295 -0.293 -0,295 -0,293 -0,293 -0,292 -0,293 

0.00 0.000 0.000 0.000 0.000 0,000 0,001 0,000 0,000 0,000 

-0.25 -0.292 -0.290 -0.295 -0.297 -0,295 -0,294 -0,293 -0,293 -0,293 

-0.50 -0.387 -0.382 -0.391 -0.393 -0,391 -0,390 -0,389 -0,388 -0,388 

-0.75 -0.055 -0.051 -0.059 -0.061 -0,059 -0,058 -0,057 -0,056 -0,056 

-1.00 1.000 1.000 1.000 1.000 1,000 1,000 1,000 1,000 1,000 

Maximum 
difference (%) 

7.27 7.27 10.91 7.27 5.45 3.64 1.82 1.82 

Computation 
Time (s) 

- 8.094 4.656 7.422 10.14 18.01 17.91 60.55 

5 Conclusions 

The strategy of using the number of collocation points for traction BIEs equal to 
the number of nodes in each element regardless of the interpolation type adopted, 
and employing the least square solution, was interesting, according to the results 
presented for the plate bending problem. Asymmetry issues in conformal 
interpolations, which have been discussed [9], were fixed in this strategy even 
using linear elements. 
     The other benefit with this strategy was hidden in the present analysis because 
only meshes for plane problems were used, which were simple lines. In three 
dimensional analyses, the computer algorithm to employ traction BIEs in surface 
regions using conformal interpolations can be simplified with this technique.  
     The increase in the computation time due to the use of more collocation 
points and operations of the least square solution can be justified by the increase 
of the accuracy without increasing the number of nodes, i.e. degrees of freedom. 
Furthermore, the benefit of obtaining a symmetric positive definite matrix can be 
interesting when iterative solutions are required in a problem. Thus, this strategy 
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can be suggested even when few traction BIEs are used in conjunction with the 
displacement BIE that does not degenerate a boundary element solution. 
     On the other hand, the time to perform matrix operations can be reduced in 
the computation process when parallel programming instructions are employed 
in the code. 
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