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Abstract 

The BEM is well established as a solid numerical technique for the analysis of 
acoustic and wave propagation problems. Its numerical formulation relies on 
previous knowledge of the Green’s functions for the specific problem to be 
studied, and thus it is usually limited to homogeneous media or to media 
incorporating regions with piecewise constant or with well-defined variations 
(such as linearly varying) of properties. In fact, the definition of these Green’s 
functions becomes difficult whenever more generic cases are considered, such as 
when the properties of the propagation media vary from point to point. For this 
case, when the properties of the medium inside a sub-region exhibit spatial 
variations, alternative approaches have to be used. In this work, a frequency 
domain model based on the joint use of the BEM and of the Kansa’s method is 
proposed to model such systems. In that model, the BEM is used to model the 
homogeneous part of the propagation domain, while Kansa’s method is used to 
model an heterogeneity, which may exhibit velocity variations from point to 
point. In the interface between the two parts of the domain, continuity of 
velocities and pressures are imposed. Kansa’s method is applied here making use 
of Multiquadric (MQ) RBFs, which incorporate a shape parameter that strongly 
influence the quality of its results. To overcome this problem, a general strategy 
based on the assessment of the domain error in the enforcement of the governing 
PDE is introduced to allow the definition of adequate values of this shape 
parameter. 
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1 Introduction 

Wave propagation in fluids and solids is a subject of interest to many branches of 
engineering sciences, such as acoustics, geophysics or oceanography. During the 
last two decades, the boundary element method (BEM) has become one of the 
major numerical techniques used for sound propagation analysis, particularly in 
domains involving unbounded or semi-infinite media [1–3]. Its main advantage 
over other well-established methods, such as the FEM and FDM, is that it can 
solve the wave equation requiring only the discretization of the boundary 
interfaces. However, it involves a sophisticated mathematical formulation, and 
requires the prior knowledge of fundamental solutions, which are available only 
for some specific scenarios. Its efficiency also depends on the special treatment 
of numerical integration of the singular and hyper-singular integrals.  
     Mainly in the last decade, meshless methods have been progressively 
developed for different fields of applied physics. One such technique is the radial 
basis function (RBF) collocation method (Kansa’s method [4, 5]). Kansa’s 
method is based on the use of RBFs to describe the pressure field within a 
specific sub-domain, and so it does not require the use of Green’s functions. 
Although different studies have been published on the use of this technique in 
acoustics, they are mostly restricted to solving the Helmholtz equation in 
problems involving 2D and 2.5D domains composed of homogeneous sub-
domains (see, for example, Tadeu et al. [6]).  
     In many problems, the domain cannot be assumed as perfectly homogeneous, 
and the most common configurations correspond to inhomogeneous media, 
either with a random or with a structured spatial or even temporal variation. 
From a physical point-of-view, the sound propagation velocity within a fluid 
varies with different factors, such as temperature and pressure, as well as with 
the presence of dissolved or suspended particles or chemicals within the 
propagation medium. If this variation is random, the variability of the 
propagation domain originates complex patterns with amplitudes and phase 
variations showing a random behaviour. For this reason, these types of problems 
are best described using statistical averages and probability densities. An 
overview of classical methods that can be used to assess the behaviour of these 
systems can be found in the works of Ishimaru [7]. 
     As can be inferred from above, it is, in many cases, desirable to model 
propagation velocities’ variations in a more detailed form, allowing for the 
simulation of inhomogeneous media. In this work, a numerical frequency 
domain model based on the joint use of the BEM and of Kansa's method is 
applied to model such systems. The BEM is used to model the homogeneous part 
of the propagation domain, while Kansa's method is used to model a 
heterogeneity, with smooth velocity variations from point to point. In the 
interface between the two parts of the domain, continuity of velocities and 
pressures is imposed. The method is formulated and validated against analytical 
solutions known for simple geometries. Kansa’s method is here applied making 
use of Multiquadric (MQ) RBFs, which incorporate a shape parameter that 
strongly influence the quality of its results. To overcome this problem, a general 
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strategy based on the assessment of the domain error in the enforcement of the 
governing PDE is introduced to allow definition of adequate values of this shape 
parameter. 

2 Mathematical formulation 

2.1 Governing PDE 

In the frequency domain, the acoustic pressure field ( p (x), x being a generic 
domain point with coordinates (x,y)) within a heterogeneous fluid medium with 
varying propagation velocity a (x), and assuming null initial conditions, can be 
described by the governing partial differential equation 
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w  being the frequency, in rad/s. 
     Analytical solution of this equation can be written in an explicit form only in 
a limited number of situations, mainly in the presence of simple geometries. 
However, the analysis of complex domain, with internal boundaries and varying 
properties, can be performed using different numerical methods. Below, two 
numerical methods are described, namely the BEM, which can be used for 
piecewise constant media with well-defined interfaces, and the RBF collocation 
method (usually designated as Kansa’s method), which allows considering 
generic point to point property variations. 

2.2 The RBF collocation method (Kansa’s method) 

Consider a closed domain W , bounded by a boundary G . Within this domain, 

consider a set of N collocation points ( ){ }
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 are boundary points. This 

distribution is illustrated in fig. 1. 

 

Figure 1: Illustration of node distribution for Kansa’s method. Circles 
represent internal nodes and squares represent boundary nodes. 
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     In Kansa’s method, the exact solution, (x)p , in eqn. (1), is approximated as 

(̂x)p  using a linear combination of Radial Basis Functions (RBFs). This 

combination can be expressed as  
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 are the N unknown coefficients to be 

determined. Substituting (x)p  by (̂x)p , and considering eqn. (2), eqn. (1) 

becomes 
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     Using this approximation, applying eqn. (3) at each internal point and 
imposing adequate boundary conditions at each boundary point (in terms of 
pressure, particle velocity or a combination of both), it becomes possible to 
establish a system of N equations on N unknowns, which allows calculation of 

the ( )
1

N
k k

a
=

 coefficients.  

     After calculation of those coefficients, the approximate solution at any given 
domain point can be computed using eqn. (2). It is worth noting that, given the 
intrinsic characteristics of the method, it becomes very simple to ascribe varying 
physical properties (in this case varying velocities) from point to point, and thus 
the method is adequate for solving problems in non-homogeneous domains. 
     In spite of the large choice of RBFs, Multi-Quadric functions (MQ) are 
possibly the most widely adopted by researchers due to the accurate results they 
can provide. These functions are defined as 
 

 2 2(x)k kr cj = + , (4) 

 

with ( ) ( )2 2
k k kr x x y y= - + - , ( ),k kx y being the center of the RBF, and 

c  being a shape (or free) parameter of the RBF. In fact, the definition of this 
parameter is a key point in the definition of accurate models making use of these 
RBFs, since its value can greatly affect the accuracy of the solution. It is know 
that large values of the shape parameter lead to smoother functions, and can 
usually provide better solutions. However, those large values also lead to ill-
conditioned equation systems, which can greatly deteriorate the quality of the 
obtained solutions. The definition of its “optimal” value is still a subject of 
research, without a definitive conclusion (see, for example, the works of Tadeu 
et al. [6] or Cheng et al. [8]).  

112  Boundary Elements and Other Mesh Reduction Methods XXXIV

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Modelling and Simulation, Vol 53, © 201  WIT Press2



2.3 The Boundary Element Method (BEM) 

Consider, now, an infinite, homogeneous domain ( 2W ), with density 2r  and 

allowing sound waves to travel with a velocity 2a , and containing a generic 

inclusion, limited by a boundary G .  
 

 

Figure 2: Illustrative representation of the BEM discretization. Open circles 
represent nodal points, while filled circles represent element limits. 

     In the absence of any distributed domain load, and considering a virtual unit 

point load oscillating with an angular frequency w  acting at point 0x , the 

following boundary integral equation may be written: 
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where p and v represent the pressure and the particle velocity, respectively, 

0(x,x )G , 0(x,x , )H n


 are, respectively, the Green’s functions for pressure and 

its first spatial derivative along a direction n


, normal to the boundary and 
pointing outwards, corresponding to the response at a boundary point x  due to a 

unit point pressure load applied at 0x ; 0 f(x ,x )incp  represents the incident 

pressure field generated by a possible point load located within the domain at 

fx ;  0c  is a constant which, for a smooth boundary, assumes the value 1/2.  

     For an infinite fluid medium, the relevant Green’s function can be defined by 

 ( ) ( )2 2(2)
0 0 0 0

2
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w
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where (2)
0H (...)  is the Hankel function of the second type and order 0. 

     After discretizing the boundary G  in beN segments (elements), equation (5) 

may be written as 

2
W

G

2 2
,a r
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     After discretizing the boundary G  in beN segments (elements), equation (5) 

may be written as 
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     Application of the load sequentially at all nodal points allows establishing 

beN  equations. The necessary integrations along the boundary can, in general, 

be performed by means of Gaussian quadrature method. However, in order to 
ensure a good the accuracy of the method, when the loaded element coincides 
with the integrated element, the resulting singular integration should be 
performed analytically. 

2.4 Coupling BEM with Kansa’s method 

As stated before, one of the strongest limitations of the BEM is that it requires 
the previous knowledge of the Green’s functions for the propagation medium, 
which can be difficult to obtain when the medium properties have generic spatial 
variations. The use of a coupled methodology making use of the BEM and of 
Kansa’s method may then be a useful approach to model problems which include 
portions of the domain with variation of properties, since Kansa’s method is 
particularly well suited to model those portions. This can be particularly 
interesting when the only small portions of the domain exhibit those variations of 
the propagation velocity, allowing the use of the BEM for the homogeneous part 
and of Kansa’s method for the heterogeneous portion. 
     Given the mathematical formulation of both methods presented above, it 
becomes simple to establish a coupling strategy between both methods, using the 
BEM for the unbounded part, and Kansa’s method for the localized portions with 
properties’ variation. In what follow, the authors propose a direct coupling 
strategy between the two methods, which is valid only when the nodes used in 
the BEM model match the boundary nodes used for Kansa’s method. Indeed, if 
the boundary nodes used for both methods coincide, it becomes possible to 
impose the continuity of the relevant quantities, namely pressure and particle 
velocity. 
     Considering the medium properties defined in the previous subsections, and 
imposing pressure and velocity continuity, the approximations given by Kansa’s 
method for pressure and for velocity can be substituted in eqn. (7), which 
becomes 
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or, writing those approximations in explicit form, and bearing in mind that 
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     Writing eqn. (9) for each of the nodal points of the BEM allows establishing 

beN  equations, all of them being a function of the N  unknowns ( )
1

N
k k

a
=

, 

which correspond to the unknown amplitudes of the RBFs. The remaining set of 
equations can be defined by establishing the governing equation (eqn. (3)) at 
each of the NI  internal points defined for Kansa’s method. After solving this 

N N´  system, the ( )
1

N
k k

a
=

 amplitudes of the RBFs can then be determined. 

     The knowledge of those amplitudes then allows calculation of the nodal 
values of pressure and velocity along the boundary. At the nodal point j , those 
quantities can be computed as: 
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     In the outer (unbounded) domain 2W , the pressure at any domain point can then 

be calculated by making use of the standard integral equation, as given in 
eqn. (8). 

3 Evaluation of the error for the coupled solution 

To evaluate the accuracy of the proposed coupled method, consider the 
configuration depicted in fig. 3, corresponding to a host fluid medium, allowing 
a velocity of 1500 m/s, containing a circular inclusion with a radius of 1.0 m 
centred with the coordinated axis system, filled with a fluid that allows a 
propagation velocity of 1800 m/s. This system is illuminated by a 2D source 
placed at (x=-5.0 m ; y=0.0 m), which emits acoustic waves with a given 
frequency. For this case, it is possible to define a reference solution in a closed 
form following the strategy defined, for example, in Tadeu et al. [9].  To analyze 
the behavior of the numerical approach, consider a grid of receivers, distributed 
between (x=-2.0 m; y=-2.0 m), and (x=2.0 m; y=2.0 m), equally spaced 0.1 m 
along the x and y directions. The pressure response is computed over this grid of 
receivers for frequencies of 100 Hz, 1000 Hz and 2000 Hz, using both the  
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analytical and the numerical strategies. An average relative error was then 
calculated as  

 
1

analytical numericalNrec
i i

analytical
i i

p p

p=

-
E = å  (12) 

     This equation allows assessing the global accuracy of the numerical model. 
The average error computed for the three frequencies using this approach is 
depicted in fig. 3b, for the case in which the 75 boundary nodes (and boundary 
elements) are located around the interface between the two fluids, and 376 
internal collocation points are uniformly distributed within the circular inclusion. 
 

 

a) 

 

b) 

Figure 3: a) Problem geometry; b) average relative error (E ) for varying 
values of the free parameter when 75 boundary nodes are used. 
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     In that plot, values of the free RBF parameter ranging from 0.1 to 2.0 are 
considered. For Kansa’s method, it is well known that the accuracy of the 
method depends on the correct choice of the free parameter; the same behavior 
can be observed here, with the average error varying as much as three orders of 
magnitude with variation of c. Clearly, an increase in this parameter originates a 
better response, up to a point that the average error becomes almost constant. 
Interestingly, the lower error level is obtained for a relatively broad range of 
values of c. As expected, the error obtained using this point distribution is 
considerably lower for the lower frequency, and then increases as smaller 
wavelengths are considered.  
     Although the evaluation of the error is straightforward for this specific 
configuration, it can become much more difficult for more general cases, for 
which it is no longer possible to obtain a reference solution analytically. Thus it 
is important to devise a general strategy that allows a quantification of the global 
error, without relying on the previous knowledge of an analytical solution. For 
this purpose, it is interesting to observe that the system of equations defined for 
Kansa’s method imposes that the governing PDE is satisfied at a discrete set of 
internal points (collocation points), but it does not enforce its satisfaction in the 
remaining portion of the domain. To illustrate this behaviour, consider the point 
distribution in fig. 4a, in which 40 nodes are located along the boundary, and 101 
internal collocation points are uniformly distributed within the domain. Fig. 4b 
illustrates the evaluation of  
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ˆ ˆ(x) (x)
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p p
w
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throughout the internal fluid domain. Clearly, in this plot, the value of e  gets 
very small (tending to zero) at the collocation points, but becomes considerably 
larger at other domain points. Considering a number 

2recN  of internal domain 

points, an average value of e  can be calculated as 
 

 

a) b) 

Figure 4: a) Node distribution using 40 boundary nodes; b) spatial 
distribution of e (calculated from eqn. 13) when c 0.5= . 
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where xi  is the thi domain point. 

     Eqn. 14 has been applied to evaluate the domain error when analyzing the 
three frequencies defined above, and considering the same problem defined in 
fig. 3a. Both this domain error and the average error with relation to the 
analytical solution (E , from eqn. (12)) were computed for a full range of values 
of the parameter c , and for varying numbers of collocation points and boundary 
elements. Fig. 5 illustrates the computed values of both parameters, as a function 
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Figure 5: Evaluation of the error using the two methodologies. 
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of the free parameter and of the number of boundary nodes. Observing the plots 
in this figure, for the three analyzed frequencies, it becomes clear that there is a 
strong relation between both parameters. In fact, observing the error plots 
computed in terms of E , for each value of c , the response initially improves 
sharply when the number of collocation points is increased; then, for larger 
numbers of collocation points, the improvement becomes much less pronounced, 
and a more constant behaviour is observed. Similarly, for a given number of 
points, the progressive increase of the free parameter originates an improvement 
in the accuracy, up to a point that the error becomes approximatelly constant. 
      When the plots computed using the parameter e  are observed, a very similar 
behavior can be identified, indicating a strong relation between the two error 
evaluation strategies. It should, however, be noticed that, for the parameter e , 
visible oscillations can be seen in these plots when larger values of c  are used 
together with larger numbers of boundary points. These oscillations correspond 
to a numerical instability of Kansa’s method, which is well known from 
previously published works by several authors (see, e.g., Kansa and Hon [10]). 
     The behaviour observed in the presented results allows inferring that, since a 
close relation can be seen between the two error estimates, the parameter e  may 
be used as a reliable guideline for the definition of an accurate response for the 
Kansa’s method. Thus, the authors suggest that the definition of a good estimate of 
the RBF free parameter can be done by progressively increasing its value, up to the 
point that the parameter e  begins to evidence an oscillatory behavior; given the 
presented results, a good choice of this parameter for a given distribution of 
collocation points, corresponds to the first local minimum of e , when it is written 
as a function of c .  

4 Final remarks 

A coupled numerical strategy, making use of Kansa’s method and of the 
Boundary Element Method, has been presented in this work for the case of 
frequency domain acoustic wave scattering. Although the results presented here 
refer to piecewise constant media, the joint use of both methods can be 
advantageous whenever a heterogeneous region with spatially varying properties 
exists within the domain. Since the Kansa’s method makes use of RBFs, which 
may include a variable parameter, a general strategy for the definition of such 
parameter has been devised, based on the evaluation of the differential operator 
from the governing PDE throughout the domain. The presented results have 
shown a close relation between the error evaluated using this strategy and the 
error computed with relation to a closed form solution.  
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