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Abstract 

The calculation of boundary vorticity, which requires the evaluation of the 
spatial derivatives of the velocity vector, remains a critical step when solving the 
fluid flow problems in the velocity-vorticity formulation. An accurate estimation 
of these quantities is required in order to obtain accurate numerical solution and 
convergence of the numerical scheme. The radial basis integral equation (RBIE) 
method is a meshless method that solves for each node the unknown potential 
and its spatial gradients.  This unique feature of the RBIE makes it an efficient 
numerical tool for solving the fluid flow problems in the velocity-vorticity 
formulation, since the velocity derivatives are directly obtained from the system 
of equations. In this study, the efficiency of the RBIE for solving the Stokes flow 
problems in 2D and 3D is investigated. The accuracy of the numerical results 
was assessed by comparing it with the solutions obtained using the finite element 
method. Numerical results showed that the RBIE can be used to efficiently and 
accurately solve Stokes flow problems.  
Keywords: meshless methods, viscous flow, velocity-vorticity formulation, RBIE, 
dual reciprocity method. 

1 Introduction 

One of the most important steps when solving Stokes flow problems in the 
velocity-vorticity formulation is the calculation of the boundary vorticity to be 
used as boundary conditions in the vorticity transport equation. An accurate 
estimation of the boundary vorticity not only yields an accurate numerical 
solution but guarantees convergence in the numerical scheme. The vorticity of a 
given velocity field is defined by the curl of the velocity vector. Consequently, 
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calculation of the boundary vorticity would require the evaluation of the spatial 
derivatives of the velocity vector.  
     The radial basis integration equation (RBIE) method is a meshless technique 
introduced recently by Popov and Bui [1]. The RBIE involves the distribution of 
nodes over the boundary and interior of the solution domain. A circular 
(spherical in 3D) subdomain centred on each node is then generated. One of the 
unique features of the RBIE is that it solves at each node for the potential and its 
spatial derivatives by using three (four in 3D) equations at each collocation node. 
In problems where the knowledge of the spatial gradients is of primary 
importance, such as in the calculation of the boundary vorticity, the RBIE 
provides a simple and straightforward numerical tool since the values of the 
spatial gradients at each node are obtained directly from the solution of the 
system of equations. This is the main focus of investigation in the present study, 
where the RBIE is used to solve 2D and 3D Stokes flow expressed in the 
velocity-vorticity formulation. The accuracy of the numerical solution is 
assessed by comparing the solutions with those obtained using the finite element 
method (FEM). In the next section, the derivation of the RBIE to solve the 
Stokes flow problem is presented briefly. The implementation of the numerical 
scheme is outlined in Section 3. This is followed by the results in Section 4 and 
conclusions in Section 5. 

2 Mathematical formulations 

2.1 Stokes flow  

The governing equation for the steady-state Stokes flow expressed in the 
velocity-vorticity formulation in the domain  bounded by the close boundary  
is given by
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where r = xi (for i = 1 and 2 in 2D;  for i = 1, 2 and 3 in 3D) are the field points 
in the Cartesian coordinate system, ui is the velocity vector and i is the vorticity 
vector. In 2D, only the 3 component of the vorticity exists. The first line in (1) 
is the vorticity transport equation, which represents the kinetic part of the flow 
while the second line is the velocity Poisson equation, which represents the 
kinematics part of the flow. 
     To complete the problem definition, the following boundary conditions are 
applied: 

 
,for,)(  rUrui o  (2a) 

 
,for,)(  rur ii  (2b) 

where Uo is a suitably prescribed function. Equation (2b), which is the 
mathematical definition of the vorticity vector, is calculated from the spatial 
derivatives of ui obtained from solving the velocity Poisson equations.
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2.2 The radial basis integral equation method 

To carry out the RBIE, Nt collocation nodes are distributed over the boundary 
and the interior of the solution domain. A circular (spherical in 3D) subdomain 
s with local boundary s centred on each node is generated, see Figure 1a.  
 

 

Figure 1: (a) Collocation of nodes and selection of subdomains; 
(b) interpolation of unknown field variables; and extrapolation of 
unknown field variables exterior to the solution domain in (c) 2D 
and (d) 3D. 

     In each subdomain, the following integral equation applies:
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where  is the coordinate of the source point,  represents each component of the 
vorticity and the velocity in the vorticity transport equation and the velocity 
Poisson equations, respectively, b is the source term, such that b = 0 for the 
vorticity transport equation and b = –   i for the velocity Poisson equations 
and (r;) is the fundamental solution of the Laplace equation. 
     The additional equations used for solving the spatial derivatives of the field 
variables are obtained by differentiating (3) yielding [1] 
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where the partial derivatives ∂/∂xi are calculated with respect to the source point 
. In writing (3) and (4), the following relationship has been utilized:
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     By carrying out the radial basis function (RBF) approximations on the 
variables (r) and ∂(r)/∂xi, i.e. 
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where f(r;r(k)) is the RBF and  and  are unknown coefficients to be 
determined; and applying the dual reciprocity method (DRM) [2] onto the 
domain integrals, (3) and (4) may be expressed as

 

 
,

)(

1

)()(

1

)(

1

)(
2

)(

1

)(

1

)(
1

)(

1

)(

















aa

aaaa

N

k

kkn
N

n

n

N

k

k
i

kn
N

n i

nN

k

kkn
N

n

n

r

Wb

FW
x

FWr




 (7) 

 

,

)(

1

)(
)(

1

)(

1

)(
2)(

1

)(

1

)(
1)(

1

)(




























aa

aaaa

N

k i

k
kn

N

n

n

N

k i

k
ikn

N

n i

nN

k i

k
kn

N

n

n

ri

x
Wb

x

F
W

xx

F
W

x

r 


 (8) 

where Na is the number of points used in the RBF approximations,  (n), ∂(n)/∂xi 
and bn are the values of (r), ∂(r)/∂xi and b at the nth approximation node and
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where (r;r(k)) is a particular solution associated with the chosen RBF. The 
coefficients W(kn) in (7) and (8) are explicitly given by
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     Equations (7) and (8) form the basis behind the implementation of the RBIE. 
     For more details on the implementation of the RBIE, one may refer to Ooi 
and Popov [3] and Ooi et al. [4].  
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3 Numerical examples 

The numerical results presented in this section were obtained by using the same 
set of nodes for the RBF approximations of the field variables and the DRM, see 
Figure 1b. In this case, Na = 25 and 40 neighbouring nodes were used in the 2D 
and 3D problems, respectively. For the nodes that are at the global boundary, the 
unknown field variables that are exterior to the solution domain are extrapolated 
using the neighbouring nodes, see Figures 1c and 1d. All boundary integrations 
are numerically evaluated using the Gaussian quadrature after transforming the 
integration domain into the polar coordinate system. The functions 4log() and 
3 were used in the RBF approximations in the 2D and 3D examples, 
respectively [3, 4], where  is the Euclidean distance between the field point and 
the interpolation point. 
     To obtain a numerical solution, an iterative procedure that solves sequentially 
for each component of the velocity and vorticity vectors was developed. The 
iterative scheme is summarized as follows: 

1. Start with an initial guess (iteration level, h = 1) of the distribution of 
vorticity derivatives ∂i

(h-1)/ ∂xj. 
2. Solve the velocity Poisson equations for the distribution of the velocity 

vector ui
(h) and its spatial derivatives, ∂ui

(h)/∂xj using ∂i
(h-1)/ ∂xj. 

3. Calculate the boundary vorticity using the values of velocity gradients 
obtained from Step 2 by evaluating expression (2b). 

4. Using the values of ui
(h) and the boundary vorticity calculated in Step 3 

as boundary conditions, solve the vorticity transport equation for the 
vorticity distribution i

(h) and its spatial derivatives, ∂i
(h)/∂xj. 

5. Relax the vorticity and its spatial derivatives by using 
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where  is known as the relaxation parameter, which is a positive real 
number in the range of  0   < 1. 

6. Check for convergence by calculating  
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     If the value of  is smaller than the pre-defined positive real number , then 
stop the iteration. Otherwise, repeat steps 1 to 6 for h + 1 by replacing the initial 
guess with the newly calculated values of vorticity. In the present study,  is 
selected to be 10-5. 
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3.1 Lid driven flow in a unit square cavity 

The first example considered was a lid driven flow in a unit square cavity. The 
vertical and the horizontal bottom walls have a stationary no-slip condition such 
that u1 = u2 = 0, see Figure 2a. The top horizontal wall moves at a unit velocity in 
the positive x1-direction, such that u1 = 1 and u2 = 0. Simulations were carried 
out using 441 uniformly distributed nodes.  
 

 

Figure 2: Geometrical sketch of the lid driven flows in a (a) unit square 
cavity; (b) rectangular cavity with wavy bottom and (c) unit cubic 
cavity. 

     Figures 3a and 3b compare the velocity in the x1- and x2-directions, 
respectively obtained using the RBIE and the FEM (with 6282 triangular 
elements). Very good agreement between the solutions of the RBIE and the FEM 
was observed. Figures 3c and 3d plot the profiles of the velocity vector and the 
vorticity distribution respectively, which agree with the results obtained by other 
researchers using other numerical methods [5, 6]. 

3.2 Lid driven flow in a rectangular cavity with wavy bottom 

The lid driven flow in a rectangular cavity with a wavy bottom is considered, see 
Figure 2b. The rectangular cavity has width and height of 5 and 2, respectively, 
while the wavy bottom surface is described by the function x2 = –0.3sin(x1) 
[1 – (|x1 – 2.5|)/2.5]. The flow is driven by the top wall, which moves in the x1-
direction at unit velocity magnitude. All other boundaries have stationary no-slip 
condition. Simulation was carried out using 1139 uniformly distributed nodes.  
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Figure 3: Plots of (a) u2 and (b) u1 along the geometrical centre of the cavity 
and profiles of the (c) velocity vector and (d) vorticity distribution. 

 

Figure 4: Plots of: (a) u2 at x2 = 1.08; (b) u1 at x1 = 2.5, and (c) the velocity 
profile inside the rectangular cavity. 
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Figure 4a compares the values of u1 and u2 along x2 = 1.08 and x1 = 2.5 axes, 
respectively between the RBIE and the FEM (with 11069 triangular elements). 
There is a slight discrepancy between the solution obtained using the RBIE and 
the FEM for u1 at points where the direction of the velocity changes. Very good 
agreement was found for u2. The velocity vector inside the rectangular cavity is 
shown in Figure 4b, which agrees with those obtained by other researchers [6]. 

3.3 Lid driven cavity in a unit cubic cavity 

A sketch of the unit cubic cavity is shown in Figure 2c. The top wall moves at a 
unit velocity in the x1-direction. All the other walls have a no-slip stationary 
condition such that u1 = u2 = u3 = 0. Simulations were carried out using 4913 
nodes. Figures 5a and 5b compares the values of u2 and u1 obtained using the 
RBIE with the FEM (with 396832 tetrahedral elements) along the geometric 
centre of the cubic cavity, where one may observe good agreement between the 
numerical solutions of the RBIE and the FEM. Figure 5c plots the profile of the 
velocity vector inside the cubic cavity at x3 = 0.25, 0.5 and 0.75. The 2D profile 
at x3 = 0.5 is shown in Figure 5d. The results obtained compare well with those 
found in the literature [5]. 
 

 
Figure 5: Plots of (a) u2 and (b) u1 along the geometrical centre of the cavity; 

(c) profiles of the 3D velocity vector at x3 = 0.25, 0.5 and 0.75; (d) 
profile of the 2D velocity vector at x3 = 0.5. 
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4 Conclusions 

The RBIE has been successfully implemented to solve 2D and 3D Stokes flow 
problems in the velocity-vorticity formulation. The RBIE is an appealing choice 
for handling such problems since the spatial derivatives of the velocity vector are 
obtained directly from the solution of the system of equations. In this way, the 
finite difference approximation that is commonly used in other numerical 
methods such as the finite difference method and the FEM can be avoided. In the 
numerical examples examined, the RBIE was found to be able to produce results 
that agree with the FEM when using significantly less number of degrees of 
freedom.  
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