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Abstract 

A simple approach for imposing the boundary conditions in the local boundary 
integral equation (LBIE) method is proposed. The proposed approach maintains 
the weak formulation on the boundary by enforcing the integral equation derived 
from the Green’s second identity and the fundamental solution of the Laplace 
equation. Unlike in the LBIE, the subdomains at the boundary in the proposed 
method preserve their circular shapes, such that difficulties associated with the 
evaluation of near-singular and singular integrals and the determination of 
intersection between the global and local boundaries can be avoided. The 
proposed approach is compared with the conventional LBIE by solving the 
convection-diffusion equation. The unknown field variables were approximated 
with the RBF approximations. Numerical results showed that the proposed 
method, despite its simplicity, yielded results of comparable accuracy with the 
LBIE when third order RBF was used. 
Keywords:  local boundary integral equation, weak formulation, radial basis 
functions, meshless methods, companion solution. 

1 Introduction 

The local boundary integral equation (LBIE) method is a meshless method 
developed by Zhu et al. [1] that combines the advantages of several 
numerical methods including the Galerkin finite element method, the boundary 
element method and the element-free Galerkin method. Implementation of the 
LBIE involves the distribution of collocation nodes over the boundary and 
interior of the solution domain, whereby a circular (spherical in 3D) subdomain 
centred on each node is generated. In each subdomain, the integral equation 
derived from the governing equation holds. The LBIE introduces the concept of 
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a companion solution such that the single layer integral is eliminated from the 
local integral equations. The unknown field variables are approximated using the 
moving least squares (MLS) approximation, although other interpolation 
schemes such as the radial basis function (RBF) approximation have been 
implemented successfully. In particular, the LBIE employing the RBF 
approximations has been known as the LBIE/RBF [2]. 
     When the collocation node is at the global boundary, the subdomain in the 
LBIE is defined by the overlapping part between the circular subdomain and the 
solution domain, while the local boundary is defined by part of the circular 
boundary that is inside the solution domain and part of the global boundary 
where the circular boundary intersects, see Figure 1. In this case, the companion 
solution does not vanish on part of the global boundary. Consequently, there is a 
need to evaluate the single and double layer integrals when imposing the 
boundary conditions for the nodes at the global boundary. This involves the 
calculations of near-singular and singular integrals, which are mathematically 
more challenging to solve. The problem is further compounded by the need to 
determine the intersection between the global and local boundaries, which is a 
cumbersome task especially in 3D problems. Although these issues may be 
avoided by using the MLS collocation scheme to impose the boundary 
conditions, this approach abandons the weak formulation on the boundary and 
requires a highly accurate interpolation scheme to yield accurate numerical 
results. 
 

 

Figure 1: (Color online) Distribution of collocation nodes and their 
corresponding subdomains. Grey and blue represents subdomains 
on the global boundary for the LBIE and the LBIE-I, respectively. 

     A simple approach for imposing the boundary conditions in the LBIE, more 
specifically, the LBIE/RBF, is proposed here. The proposed method maintains 
the weak formulation by enforcing the integral equation derived using the 
fundamental solution and the Green’s second identity on the boundary. The 
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subdomains for the nodes on the boundary preserve their circular shapes. 
Unknown field variables that are exterior to the solution domain are extrapolated 
using neighbouring nodes. Consequently, no near-singular and singular integrals 
are encountered, since the source point is always located at the centre of the 
subdomain. The daunting task of locating the intersection between the local and 
global boundaries can also be avoided. For nodes at the interior, the approach is 
the same as in the conventional LBIE. For simplicity, the LBIE adopting the 
proposed approach for imposing the boundary condition is hereafter referred to 
as the LBIE-I. 
     The mathematical derivations of the LBIE and the LBIE-I are presented in the 
next section. Section 3 outlines the RBF approximation scheme used in this 
study. The numerical implementation of the LBIE and the LBIE-I are given in 
Section 4. Comparisons between the LBIE and the LBIE-I are presented in 
Section 5 and the conclusions are given in Section 6. 

2 Mathematical formulations 

2.1 Problem definition 

Consider the domain  bounded by the close curve  defined in the two-
dimensional Cartesian coordinate system. The equation governing the steady-
state potential distribution in    is given by 
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where r = (x1, x2) are the coordinates of the field point, u is the potential and b is 
the source term, where b  b(r, u, ∂u/∂xi). To complete the problem definition, 
(1) is subjected to the following boundary conditions: 
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where uo and qo are suitably prescribed functions and 1 and 2 are two non-
intersecting parts of  such that  = 1  2. 

2.2 The local boundary integral equation 

To carry out the LBIE, a series of Nt nodes are distributed over   . A circular 
subdomain, s centred on each node is generated, see Figure 1. For nodes at the 
global boundary, the subdomain is taken as the overlapping part between the 
circular subdomain and the solution domain (see grey region in Figure 1). 
     Using the Green’s second identity and the fundamental solution of the 
Laplace equation, the integral equation of (1) defined over the subdomain s can 
be derived, which is given by 
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where s is the local boundary of the subdomain s,  is the source point and 
(r;) is the fundamental solution of the Laplace equation. By introducing the 
companion solution [1] for subdomains which do not have contact with the 
global boundary, (3) reduces to 
 

 
,d);(d

);(
)()( *

*











ss

rb
n

r
ruru

r


  (4) 

 

for  at the interior.  When  is at the boundary the following equation is used 
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where Gs and Ls are the global and local sections of the local boundary s, see 
Figure 1,  is a geometric coefficient such that  = /2, where  is the internal 
angle at the boundary and (r;) is the modified test function given by [1] 
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where  is the Euclidean distance between the field point r and the source point 
 and s is the radius of the subdomain s. For more details on the derivation of 
the LBIE, one may refer to the works of Zhu et al. [1]. 

2.3 The local boundary integral equation-I 

The formulation of the LBIE-I is the same as in the LBIE when the collocation 
node is at the interior, i.e. (4) is used. For the nodes at the global boundary, the 
following equation, which is obtained by differentiating (3) with respect to the 
source point, is used: 
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where nj are the components of the outward unit normal vector. The boundary 
integral on the right hand side of (7) is carried out over the complete circular 
boundary of the subdomain (see blue region in Figure 1).  
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3 The radial basis function approximation 

In this study, the unknown field variables in (4), (5) and (7) are approximated in 
terms of the neighbouring nodes by using the RBF approximations, i.e. 
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where Na is the number of points used in the RBF approximation, f(r;r(k)) is the 
RBF and (k) are unknown coefficients, which may be expressed as 
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where the coefficients W(kn) are explicitly given by 
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     Substituting (9) into (8) yields 
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where un is the value of u at the nth approximation point. In the LBIE-I, the 
unknown variables ∂u(r)/∂xj in (7) are expressed in terms of u by differentiating 
(11). This leads to 
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     The choice of the RBF used has a strong influence on the accuracy of the 
numerical solutions. One of the most commonly used RBF in variables 
approximation is the polyharmonic spline, which in 2D, has two different forms, 
i.e. 
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     The polyharmonic spline in (13) is usually augmented with global 
polynomials of the form 
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where ai (for i = 0, 1, 2, ….) are unknown coefficients to be determined.  
     The order of the polynomial used in the augmentation depends on the order of 
the RBF used. For instance, if a second order RBF is used (n = 2 in (13)), then 
the second order polynomial, i.e. up to six terms in (14) should be used. The 
polynomial augmentation is important to ensure convergence of the RBF 
approximation [3]. 

4 Numerical implementation 

In the LBIE, (3) is used in the assembly of the system of equations when the 
collocation node is at the interior. Substituting (11) into (3) leads to 
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where  
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     When the collocation node is at the boundary where the Dirichlet condition is 
specified, no equation is enforced here since the value of potential is already 
known. When the collocation node is at the boundary where the Neumann 
condition is specified, (4) is used, where upon substituting for (11), yields 
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     In the LBIE-I, the equation used when the node is at the interior is the same 
as in the LBIE, i.e. (15) is used. Likewise, at the boundary where the Dirichlet 
condition is specified, no equation is used. When the collocation node is at the 
boundary where the Neumann condition is specified, (7) is used, where upon 
substituting (11) and (12), yields 
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where 
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and ni()·(∂/∂xi) = nx()·(∂/∂x) + ny()·(∂/∂y). 

5 Numerical example 

In this section, the LBIE-I is compared with the LBIE by solving the convection-
diffusion equation:  
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where k is the reaction rate and Vx(r) is the velocity field given by 
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where U1 and Uo  are suitably prescribed functions. The solution domain was 
chosen to be 0  x  L and –W  y  W.  The following boundary conditions were 
applied: 
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     The exact solution is given by u(r) = Uoexp{0.5kx2 + (x/L)[ln(U1/Uo)] – 
0.5kLx}. 
     The values of W, L, U1 and Uo were chosen to be 0.25, 1, 10 and 4, 
respectively. Two different values of k were considered, i.e. 10 and 40. 
Numerical simulations were carried out using Na = 25 points in the RBF 
approximations. The integrals over the local boundary (see (15) to (20)) and the 
domain integrals are evaluated numerically using the Gaussian quadrature with 
20 and 400 Gaussian points, respectively. The integrals over the global boundary 
(see 2nd and 3rd lines in (18)) were evaluated analytically based on the formulae 
reported in Ang [4]. The LBIE and the LBIE-I were tested using two different 
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RBFs, i.e. 4log() augmented with the second order global polynomial and 
6log() augmented with the third order global polynomial. 
     Results from the numerical simulations showed that the LBIE produced more 
accurate results than the LBIE-I in the calculations of u when the RBF 4log() 
was used; although the differences in the L2 norm error between the LBIE and 
the LBIE-I decreased with increasing k (results not presented here). Negligible 
differences in the L2 norm errors were observed in the calculations of ∂u/∂x.  
     Figure 2 plots the L2 norm errors of u and ∂u/∂x against the total number of 
nodes for the cases when the RBF 6log() was used. The L2 norm error 
decreased with increasing number of nodes in both the LBIE and the LBIE-I; 
suggesting convergence in the numerical schemes. The LBIE-I was found to 
produce more accurate results than the LBIE as the number of nodes increased 
for the case when k = 10. For the case when k = 40, the LBIE was more accurate 
than the LBIE-I when the number of nodes used was less than approximately 
6000. As the number of nodes increased, the accuracy of the LBIE and the  
LBIE-I became comparable. 
 
 

 

Figure 2: Plots of the L2 norm errors of u and ∂u/∂x against the total number 
of nodes used obtained using the RBF 6log() for: (a) k = 10 and 
(b) k = 40. 
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     Figure 3 plots the spatial distribution of the percentage errors for u and ∂u/∂x. 
The LBIE-I produced higher percentage errors along the boundary while the 
maximum percentage error of the LBIE was concentrated at the centre of the 
domain. 
 

 

Figure 3: Distribution of the percentage error of u (%) in test problem 4 for: 
(a) k  = 10 and (b) k = 40, obtained using the RBF 6log()  and 

     Table 1 summarizes the total CPU time of the LBIE and the LBIE-I. The total 
CPU time represents the sum of the times needed to evaluate the boundary and 
domain integrals (see (15) to (20)), to assemble the system of linear algebraic 
equations and to solve the system matrix. The total CPU time includes also the 
time needed to calculate ∂u/∂x by using (7) during post-processing. The CPU 
time of the LBIE-I is shorter than the LBIE although the differences were not 
significant. 

Table 1:  Total CPU time of the LBIE and the LBIE-I. 

Number of nodes Total CPU time (s) 
 LBIE-I LBIE 

861 8.81 9.73 
1326 14.08 16.14 
1891 20.27 22.53 
3321 37.22 40.94 
5151 61.33 66.47 
7381 96.16 102.17 

1891 collocation nodes. 
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6 Conclusions 

A simplified approach for imposing the boundary conditions in the LBIE has 
been proposed. The proposed method maintains the weak formulation on the 
boundary by enforcing the integral equation derived from the Green’s second 
identity and the fundamental solution of the Laplace equation.  
     The LBIE-I was compared with the LBIE by solving the convection-diffusion 
equation. When the lower order RBF (4log()) was used, the accuracy of the 
LBIE-I was lower compared to the one of the LBIE. However, when the higher 
order RBF (6log()) was used, the LBIE-I was found to be of comparable 
accuracy to the LBIE. This may be explained by the differentiation of the RBF 
approximation used when approximating the potential gradient in the integral 
equation in the LBIE-I. Differentiation reduces the order of the RBF 
approximations by one. This leads to the decrease in the accuracy of the 
approximations on the boundary. Consequently, if the RBF is not carefully 
chosen, the numerical results obtained, especially along the boundaries can be 
less accurate. Computations with the LBIE-I took slightly shorter CPU time 
compared to the LBIE. 
     The LBIE-I offers an appealing alternative for imposing the boundary 
conditions. Unlike the LBIE, the subdomains at the global boundary in the 
proposed formulation preserve their circular shapes. Hence, the difficulty 
associated with the evaluation of near-singular and singular integrals can be 
avoided. Furthermore, since the intersections between the global and local 
boundaries are not required, extension of the method to 3D cases is 
straightforward.  
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