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Abstract

We study a meshless method based on Taylor series approximation. This method
solves quasi-exactly the Partial Differential Equation (PDE) in the domain. The
boundary conditions are applied by using a least square method as proposed
by Zhang et al. for stabilizing collocation method. Sometimes, the convergence
can only be obtained by splitting the domain in to several subdomains: a new
bridging technique is proposed to match several polynomial approximations.
Finally, numerical techniques like the Domb Sykes plot permits us to estimate
the radius of convergence of the series.
Keywords: meshless method, junction method, convergence analysis, Taylor series
expansion.

1 Introduction

Meshless methods are considered as promising alternatives to overcome the
difficulties related to mesh generation. Each class of meshless method can
be characterized by the form of the used shape functions, the most common
ones being based on moving least square techniques [1], radial functions [2]
or fundamental solutions [3]. In this paper we discuss another recent method
proposed in Zézé et al. [4], where the shape functions are high degree polynoms
that are computed by solving locally the Partial Differential Equation. For instance
in the case of the bi-dimensional Laplace equation, this analytical solution leads
to a family of polynomial shape functions Re(x + iy)n and Im(x + iy)n. In this
respect the presented method is boundary only, because the PDE is solved quasi-
exactly inside the domain. This method has several advantages. First the number
of shape functions is much smaller than with the p-version of finite elements [5,  6].
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Second the partial differential equation is solved quasi-exactly inside the domain
so that only the discretization of the boundary is needed. Lastly it can converge
very rapidly with the degree (p-convergence).

The scope of the paper is as follows. First we discuss the way to account for the
boundary conditions. It is established that a pure collocation generally diverges and
that better results are obtained by applying a least square method as proposed by
Zhang et al. [7]. Next a computational technique is sketched that permits to apply
Taylor series to PDE’s, what permits to compute explicitly the shape functions.
Of course, one cannot hope to approximate the solution of any elliptic PDE by a
family of polynoms, even if this is possible in theory. That is why we discuss in
part 4 bridging techniques to match several Taylor series, each one being valid in a
subdomain. In part 5, the radius of convergence, the location and the nature of the
singularities of the sought solution will be analyzed by using classical techniques
such as Domb Sykes plot, Hadamard criterion or Darboux criterion [8].

2 How to apply the boundary conditions

2.1 Least square collocation

In this section, a meshless method based on Taylor series approximation is briefly
described. A detailed description of the method may be obtained from Zézé [9]. To
illustrate the technique we consider a bi-dimensional Neumann Dirichlet problem:

− ∆u = 0 in Ω

u(x) = ud(x) on Γ1
∂u

∂n
= g on Γ2

(1)

where ∂Ω = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅.
The main idea of this technique is to introduce high degree polynomial shape

functions that are exact or quasi-exact solutions of the PDE. In the case of Laplace
equation (1), all the solutions of −∆u = 0 that are polynoms of degree lower or
equal to N can be written as:

u(x, y) =
2N+1∑
k=1

qkPk(x, y) = 〈P (x, y)〉 {q} . (2)

〈P (x, y)〉 =
〈
1, x, y, x2 − y2, xy, · · · , Re(x + iy)n, Im(x + iy)n

〉
. (3)

So the general solution of the problem is completely obtained by determining
these 2N + 1 variables from the boundary conditions. A least square method
combined with collocation method will be used. This technique has been suggested
by Zhang et al. [7]. One chooses a set of nodes xj on the boundary of the domain
and one minimizes the error between the approximate value and the given value of
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u in these points. It comes to minimize the function:

J(v) =
1
2

∑
xj∈Γ1

|uh(xj) − ud(xj)|2 +
1
2

∑
xj∈Γ2

|∂uh

∂n
(xj) − g(xj)|2. (4)

This minimization leads to a linear system K{v} = F where K is an invertible
matrix. Solving this system gives the vector {v} and therefore the approximate
solution of the problem (1).

2.2 Convergence

This section presents the numerical solutions of some examples studied to validate
the meshless method presented above. The validation will be made on Laplace
equation. The Laplace equation has been considered in a circular domain with an
exact solution which presents a singularity at a point out of the domain. The effect
of the singularity on the solution accuracy was investigated. A comparison of the
proposed method with the finite element method will be presented.

We consider the Dirichlet problem (1) in a circular domain:
− ∆u = 0 in Ω = {(x, y)/x2 + y2 ≤ 1}

u(x) =
x − x0

(x − x0)2 + (y − y0)2
on ∂Ω.

(5)

Here we are interested by the influence of the singular point X0 = [x0, y0] on
the rate of convergence. For that we examine the maximum of the relative error in
the domain. The relative error is defined by:

E =
|u(x) − uh(x)|

|u(x)| =
|u(x) −∑N

i=0 ui,N−ix
iyN−i|

|u(x)| . (6)

Let us examine E for two different singular points.
From Fig. 1, the following comments can be made.
• The algorithm converges. The error is about 10−10 for the singular point at

X0 = [2, 0.3] and for order p = 30.
• The technique converges exponentially with the degree (p-convergence).
• The quality of the approximation depends on the considered problem,

especially on the position of the singular point X0. The rate of convergence
is better if the singularity is away from the domain.

The same method has been also applied to various boundary conditions
(Neumann, Robin) and to various PDE (Helmholtz equation, linear elasticity), and
various domains, similar conclusions have generally been obtained.

The present results have been compared with the finite element method.
Roughly, our boundary meshless requires much less degrees of freedom. For
instance, the problem (5) with X0 = [1.2, 0.3] can be solved with a relative error of
10−4 with only 91 dof’s, while quadrangular finite elements of degrees 2 require
4880 dof’s and triangular linear FE need 42000 dof’s.
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Figure 1: P-convergence for two Laplace problems (5) that differ by the position
of the singularity X0 = [x0, y0].

As established in [4,  9], the pure collocation approach does not converge in many
cases: the least square collocation method is necessary in the case of high degree
polynomial shape functions.

Last the present method does not converge in any case, especially for annular
domains with an exact solution that has a singularity inner the small circle. That is
why a splitting in subdomains is sketched in part 4.

3 How to compute the shape functions

The basic idea is to consider the PDE as an ordinary differential equation with
respect to one variable, say y, and to solve the Cauchy problem with initial data
u(x, 0) and ∂u/∂y(x, 0). These initial data will be approximated by polynoms
with respective degrees N and N−1 and u(x, y) is sought in the form of a polynom
of degree N .

To illustrate the technique, let us considered the homogeneous Helmholtz
equation with constant coefficients:

−∆u + cu = 0 (7)

The approximate solution of the PDE (7) is sought in the form of a polynom of
degree N :

uh(x, y) =
N∑

k=0

k∑
i=0

ui,k−ix
iyk−i =

N∑
k=0

〈
Xk
〉 {

uk
}

(8)
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〈
Xk
〉

=
〈
xk, xk−1y, · · · , yk

〉
, t

{
uk
}

= 〈uk,0, uk−1,1, · · · , u0,k〉 .

For each degree k, the unknown is the vector {uk} ∈ R
k+1. For the complete

polynom (8), there are (N + 1)(N + 2)/2 coefficients to be found.
By vanishing the polynom (7), one gets a linear system of equations:

−[∆k]{uk+2} + c{uk} = {0} ∀k, 0 ≤ k ≤ N − 2 (9)

For each k, there are k+1 equations in (9) for k+3 unknowns ({uk+2} ∈ R
k+3).

Each vector {uk+2} can then be written as a function of its two first components:

{
vk
}

=

{
uk,0

uk−1,1

}
∈ R

2. (10)

Hence the account of the PDE (see [4]) reduces the general polynom (8) to a
family of 2N + 1 polynoms < Pk > instead of (N + 1)(N + 2)/2:

uh(x, y) =
N∑

k=0

< Pk > {vk} = 〈P (x, y)〉 {v} . (11)

The procedure can be extended in more complex cases, for instance if c is a
function of (x, y), see [4]. One gets equations similar to (9) by requiring that all
the derivatives of −∆u + cu at a point (xc, yc) vanish up to order N − 2.

In order words, the vectorial space (11) contains all the polynoms that are
approximated solutions of the PDE, the approximation made understood in the
sense of Taylor series at a given expansion point.

An easy implementation of this algorithm can be established with the help of
Automatic Differentiation method [10].

4 Towards a piecewise discretisation method

The boundary meshless method described in Part 2 does not converge in any case.
For instance, we have studied the Poisson problem in an annular domain:

− ∆u =
1

(x2 + y2)2
in Ω = {(x, y)/r21 ≤ x2 + y2 ≤ r22}

u(x) = ud(x) on Γ1

(12)

For this problem and for any problem, whose solution has a singularity inside
the small circle, the method of Part 2 diverges.

To overcome the difficulty, we propose to seek the solution in a piecewise
manner, as in the finite element method.Thus the domain is split in several
subdomains and a polynomial solution in the form (8) is introduced in each
subdomain. How to match these high degree polynoms? Of course it is not possible
to achieve a perfect continuity along the interface. A first idea, presented in [9],
is to introduce new terms in the minimization problem (4) to account for the
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Figure 2: Influence of the number of subdomains (h-convergence).

continuity of u and its normal derivative along the interface. The latter method
is able to provide correct approximation (say error about 1%), but it is not reliable
and does not ensure an exponential convergence with the degree.

Here we present another idea, where the continuity of u and ∂u/∂n at some
collocation points xj along the interface is introduced as constraints in the
minimization problem (4):

h1(x) = u1(x) − u2(x) , h2(x) =
∂u1

∂n
(x) − ∂u2

∂n
(x). (13)

In the case of two subdomains, the discrete problem to be solved follows from
the stationarity of the function:

L(v1, v2, λ1, λ2) = J1(v1) + J2(v2) +
∑

i

(λi
1h1(xi) + λi

2h2(xi)). (14)

As an example, let us study the Poisson problem in a crown of radius r1 = 0.8,
r2 = 1. The convergence with the number of subdomains (h-convergence) is
presented in figure 2 in the case of a degree N = 10: one sees that a monotone
convergence and a high accuracy (error of about 10−6) can be obtained in this way.

An exponential convergence is obtained for a number of subdomains larger
than 4. For instance, with four subdomains and a degree 20, the relative error is
of 10−4.
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It is also possible to introduce continuity constraints in a mean sense, in a way
similar to the Arlequin method [11]. This leads to very good results that will be
presented in forthcoming papers.

5 Evaluation of the convergence radius and convergence
acceleration

As seen in figure 1, the speed of convergence depends on the considered problem.
Hence there is a need to analyze the convergence of Taylor series and to find the
location and the nature of singularities of the function computed by the high order
meshless method.

5.1 Radius of convergence

Generally the radius of convergence of a power series is determined by the
behavior of its coefficients at infinity. There exist several techniques to estimate
the radius of convergence from a finite number of coefficients [12, 13]. The radius
of convergence is supposed to be the nearest singularity. We applied some of these
techniques to our algorithm and we compare the results to the Hadamard criterion
which postulates that “the radius of convergence of a series

∑
anxn is R = 1/L

with L = lim sup ‖an‖1/n ”.

5.2 Domb Sykes plot

Domb and Sykes in [12] shows that the inverse ratio cn/cn−1 is often a linear
function of 1/n for n sufficiently large. Indeed for a singular function of type
(singularity at x0):

f(x) ∼= const ∗
{

(x0 ± x)ν , ν �= 0, 1, 2, · · ·
(x0 ± x)ν log(x0 ± x), ν = 0, 1, 2, · · ·

the coefficients of its power series satisfy:

Ds(i) ∼= ci

ci−1
= ± 1

x0
(1 − 1 + ν

i
). (15)

A similar method, attributed to Darboux, can also be applied [13].

5.3 Padé approximant

The idea of this technique is to replace a power series truncated at degree M + N
by a rational function [M/N ] with a numerator of degree M and a denominator
of degree N [14]. In the literature, Padé approximants are used for convergence
acceleration and for detection of singularities [15]. The singularities are detected
by the poles of the fraction.
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Let f be an analytic function defined by a formal power series:

f(z) =
∞∑

i=0

ciz
i (16)

A [L/M ] Padé approximant of the function f is a rational fraction such that the
Taylor expansion coincides with the one of f up to order L + M .

The advantages and drawbacks of Padé approximants are well known. As
compared with the previous methods, it can detect several singularities, often
accurately, but not an order of singularity that differs from −1. Nevertheless this
procedure is not quite reliable. Some insignificant poles can be observed within
the computations of Padé approximants, that are called “defects” in the Padé
literature [14].

5.4 Numerical results

In this section, the radius of convergence and the nearest singularity are evaluated
by using the classical criteria presented in the previous sections. Let us recall that
we do not analyse a given analytical function, but a numerical function that is
obtained by combining Taylor series and boundary collocation, as presented in
section 2. In other words, one looks at a possible influence of the identification by
collocation on the radius of convergence of the solution of the PDE. Indeed the
strong connection between singularity and exponential convergence of the method
has been established in section 2 and this evaluation of the nearest singularity
should permit to predict the convergence of the boundary collocation method.

Three techniques have been presented to analyse the Taylor series: the
Hadamard criterion that leads to an estimate of the radius of convergence, the
Domb Sykes plot that gives the nearest real singularity and its order and the Padé
approximant method that permits to find some singularities and get convergence
improvements. All these methods analyse univariate functions, while the solution
of the PDE is a function of two variables u(x, y). The four convergence criteria
will be applied on some lines of the plane, for instance lines parallel to ox
by considering the function x → u(x, y) or radial lines in the θ direction by
considering r → u(r cos θ, r sin θ).

We have applied the Domb Sykes plot in several directions and we observed
that the ratio Ds(N) converges only in the direction of the singularity θ =
arctan(y0/x0).

Hence it seems that an efficient algorithm to detect the nearest singularity in
the plane would be defined by analysing the ratio Ds(N) in many radial lines.
The direction of the singularity is the one such that the ratio Ds(N) converges for
large N :

‖Ds(N) − Ds(N − 1)‖ ≤ ε

In table 1, one presents the position of the singularity estimated by Hadamard
criterion and Domb Sykes plot. This table is built in the direction of the singularity.
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It is found that these two techniques give a good estimation of the position of
singularity as well as the order of singularity.

Table 1: Position of singularity.

Degree Domb Hadamard

(N) Sykes criterion

15 1.2374 1.2395

20 1.2368 1.2388

30 1.2369 1.2381

40 1.2369 1.2378

Table 2: Padé approximant poles.

Padé θ = 0 θ = arctan(y0/x0)

[11/1] 1.2109 1.2346

[10/2] 1.2 ± 0.29i 1.2369 ; 0.808

[6/6] 1.2 ± 0.3i 1.2369 ; 0.808

0.78 ± 0.19i -0.04 ± 1.15i

-0.82 ± 0.85i -0.9 ± 0.62i

In table 2 we present the poles of the Padé approximant for the Laplace problem
in several directions.

In contrast to the results from Domb Sykes method, the singular point appears
whatever the chosen direction. Despite all, this pole is difficult to be extracted in
cases where the structure of the analytical solution is unknown. This is due to
the presence of other poles, which are known as defects by specialists of Padé
approximants (see for instance the pole 0.808 in the last column of table 2). Hence
this technique can not be used alone to define a reliable criterion for detecting
singularity.

But in the literature, Padé approximant method is one of the most common
methods for improving the convergence of a series [15]. A comparison between
the accuracy of the polynomial approximation and of the Padé approximants is
presented in table 3. Clearly the Padé approximants improves significantly the
convergence of the method (error of order 10−3 instead of 10−1 with series).

Table 3: Logarithm of the error with various Padé approximants: Laplace problem
with singularity .at [1.2, 0.3]

Series Pade Pade Pade Pade

(degree=12) [11/1] [10/2] [9/3] [6/6]

θ = 0 -1.048 -0.676 -2.417 -2.415 -4.188

θ = π/2 -1.561 -1.2025 -4.313 -4.333 -4.568

θ = −2π/3 -1.547 -0.459 -3.484 -2.798 -4.408

θ = arctan(y0/x0) -0.591 -2.255 -2.776 -2.776 -2.776
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6 Concluding remarks

Some numerical tools have been presented to evaluate the convergence properties
of Taylor series computed by a high order boundary meshless method. The key
point of this meshless method is the introduction of high degree polynomial
shape functions that are accurate solutions of the studied PDE. The principle is
to require that the Taylor coefficients of the equation at a given point vanish. This
is a true boundary meshless method, the discrete equations being obtained by a
least squares collocation technique and the collocation points located only on the
boundary. A comparison with the classical finite element method has shown that
the present method requires much less degrees of freedom.

It has been clearly established that the method converges exponentially with
the degree and that the speed of convergence is strongly related to the radius of
convergence and to the location of the nearest singularity. For simple problems,
the method may converge with a single polynomial approximation. Nevertheless,
to build a generic numerical technique, one has to split the domain in several
subdomains. This is a difficult challenge to match efficiently high degree
approximations: a new collocation technique involving Lagrange multipliers has
been proposed that preserves the ability to converge. Several classical tools to
evaluate the convergence of the series have been tested for academic boundary
value problems.
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