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Abstract

We propose the numerical approximation of the boundary and internal
thermoelastic fields in the case of two-dimensional isotropic linear thermoelastic
solids by combining the method of fundamental solutions (MFS) with the method
of particular solutions (MPS). A particular solution of the non-homogeneous
equations of equilibrium associated with a two-dimensional isotropic linear
thermoelastic material is derived based on the MFS approximation of the boundary
value problem for the heat conduction equation.
Keywords: linear thermoelasticity, direct problems, method of fundamental
solutions, particular solution.

1 Introduction

The method of fundamental solutions (MFS) is a meshless/meshfree boundary
collocation method which is applicable to boundary value problems for which
a fundamental solution of the operator in the governing equation is known. In
spite of this restriction, the MFS has become very popular primarily because
of the ease with which it can be implemented, in particular for problems in
complex geometries. Since its introduction as a numerical method by Mathon
and Johnston [1], it has been successfully applied to a large variety of physical
problems, an account of which may be found in the survey papers [2, 3].
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The MFS, in conjunction with the method of particular solutions (MPS) and
the dual reciprocity method, was applied to the numerical solution of direct
problems in three-dimensional isotropic linear thermoelasticity by Karageorghis
and Smyrlis [4] and Tsai [5], respectively. To the best of our knowledge, direct
problems associated with the two-dimensional isotropic linear thermoelasticity
have not been solved by the MFS as yet. Therefore, it is the purpose of this study
to propose a combined MFS-MPS approach for such problems.

2 Mathematical formulation

Consider a domain Ω ⊂ R
2 which is bounded by a (piecewise) smooth curve ∂Ω

and occupied by an isotropic solid characterised by the thermal conductivity, κ,
the coefficient of linear thermal expansion, αT, Poisson’s ratio, ν, and the shear
modulus, G, respectively.

In the framework of isotropic linear thermoelasticity, the strain tensor, ε =
[εij ]1≤i,j≤2, is related to the stress tensor, σ = [σij ]1≤i,j≤2, by means of the
constitutive law of thermoelasticity, namely

ε(x) =
1

2G

[
σ(x) − ν

1 + ν
tr (σ(x)) I

]
+αT T(x) I , x ∈ Ω = Ω∪∂Ω . (1)

Here I = [δij ]1≤i,j≤2 denotes the identity matrix in R
2×2, ν = ν for a plane

strain state and ν = ν
/
(1 + ν) for a plane stress state, while αT = αT and

αT = αT (1 + ν)
/
(1 + 2ν) in case of the plane strain and plane stress states,

respectively. We note from eqn (1) that the shear strains are not affected by the
temperature as the free thermal expansion does not produce any angular distortion
in an isotropic material. The constitutive law of thermoelasticity (1) can also be
conveniently expressed in terms of the stresses as

σ(x) = 2G

[
ε(x) +

ν

1 − 2ν
tr (ε(x)) I

]
− γ T(x) I , x ∈ Ω , (2)

where γ = 2GαT(1 + ν)
/
(1 − 2ν).

The equations of equilibrium are similar to those of isotropic linear elasticity
since they are based on purely mechanical considerations. The stress tensor can be
expressed in terms of the displacement derivatives by combining the constitutive
law (2) with the kinematic relation

ε(x) =
1
2
(∇u(x) + ∇u(x)T

)
, x ∈ Ω , (3)

to yield

σ(x) = G

[(∇u(x) + ∇u(x)T
)

+
2ν

1 − 2ν

(∇ · u(x)
)
I
]
− γ T(x) I , x ∈ Ω .

(4)
By assuming the absence of body forces, one obtains the equilibrium equations

of isotropic linear thermoelasticity in terms of the displacement vector and
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the temperature (also known as the Navier-Lamé system of isotropic linear
thermoelasticity), namely

−∇ · σ(x) ≡ L u(x) + γ ∇T(x) = 0 , x ∈ Ω , (5)

where L = (L1, L2)
T is the partial differential operator associated with the

Navier-Lamé system of isotropic linear elasticity, i.e.

L u(x) ≡ −G

[
∇ · (∇u(x) + ∇u(x)T

)
+

2ν

1 − 2ν
∇(∇ · u(x)

)]
, x ∈ Ω . (6)

Further, we let n(x) be the outward unit normal vector at ∂Ω and t(x) be the
traction vector at x ∈ ∂Ω given by

t(x) ≡ σ(x)n(x) , x ∈ ∂Ω . (7)

If the boundary segments Γu ⊂ ∂Ω and Γt ⊂ ∂Ω are such that Γu ∩ Γt = ∅

and Γu ∪ Γt = ∂Ω, and the displacement and traction vectors are prescribed on
these boundaries, i.e.

u(x) = ũ(x) , x ∈ Γu , (8a)

and

t(x) = t̃(x) , x ∈ Γt , (8b)

then eqns (5), (8a) and (8b) represent the boundary value problem associated
with the equations of equilibrium for two-dimensional steady-state isotropic linear
thermoelasticity.

Next, we let q(x) be the normal heat flux at a point x ∈ ∂Ω defined by

q(x) ≡ −(κ∇T(x)
) · n(x) , x ∈ ∂Ω . (9)

If the temperature and normal heat flux are prescribed on the boundaries ΓT ⊂
∂Ω and Γq ⊂ ∂Ω, respectively, where ΓT ∩ Γq = ∅ and ΓT ∪ Γq = ∂Ω, then one
obtains the boundary value problem associated with the heat conduction equation
for two-dimensional steady-state isotropic linear thermoelasticity. In the absence
of heat sources, this problem can be recast as

−∇ · (κ∇T(x)
)

= 0 , x ∈ Ω , (10a)

T(x) = T̃(x) , x ∈ ΓT , (10b)

q(x) = q̃(x) , x ∈ Γq . (10c)
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3 Algorithm

In this study, we propose the numerical solution of boundary value problems
associated with two-dimensional isotropic linear thermoelastic solids, i.e. eqns (5),
(8a) and (8b), and eqns (10a)–(10c), respectively, using the MFS in conjunction
with the MPS. More precisely, the boundary value problem for the heat conduction
equation (10a)–(10c) is first solved numerically by applying a standard MFS.
Next, based on this numerical approximation for the temperature field in the solid,
we derive - to our knowledge, for the first time - a particular solution of the
non-homogeneous equilibrium equations (5). Finally, we apply again a standard
MFS to the resulting boundary value problem corresponding to the homogeneous
equilibrium equations for a two-dimensional isotropic linear elastic material.

The numerical procedure described above can be summarised as follows:
Step 1. Solve the thermal problem (10a)–(10c) using a standard MFS to

determine the unknown boundary temperature T
∣∣
Γq

and flux q
∣∣
ΓT

,

as well as the temperature distribution in the domain T
∣∣
Ω

.
Step 2. Determine a particular solution u(P) of the non-homogeneous

equilibrium equations (5) in R
2, as well as the corresponding

particular strain tensor

ε(P)(x) =
1
2

(
∇u(P)(x) + ∇u(P)(x)T

)
, x ∈ R

2 , (11a)

stress tensor

σ(P)(x) = 2G

[
ε(P)(x) +

ν

1 − 2ν
tr
(
ε(P)(x)

)
I
]

, x ∈ R
2, (11b)

and traction vector

t(P)(x) = σ(P)(x)n(x) , x ∈ ∂Ω . (11c)

Step 3. Solve the resulting direct problem for the homogeneous
equilibrium equations in two-dimensional isotropic linear elasticity,
i.e.

L u(H)(x) = 0 , x ∈ Ω , (12a)

u(H)(x) = ũ(x) − u(P)(x) , x ∈ Γu , (12b)

t(H)(x) = t̃(x) −
[
t(P)(x) − γ T(x)n(x)

]
, x ∈ Γt , (12c)

using a standard MFS to determine the unknown boundary
displacement u(H)

∣∣
Γt

and traction t(H)
∣∣
Γu

, as well as u(H)
∣∣
Ω

, ε(H)
∣∣
Ω

and σ(H)
∣∣
Ω

.
Step 4. On applying the superposition principle, determine the unknown

boundary displacement u
∣∣
Γt

= u(H)
∣∣
Γt

+ u(P)
∣∣
Γt

and boundary

traction t
∣∣
Γu

= t(H)
∣∣
Γu

+
(
t(P) − γ Tn

) ∣∣
Γu

, as well as the
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mechanical fields inside the domain, namely u
∣∣
Ω

= u(H)
∣∣
Ω
+u(P)

∣∣
Ω

,
ε
∣∣
Ω

= ε(H)
∣∣
Ω

+ ε(P)
∣∣
Ω

and σ
∣∣
Ω

= σ(H)
∣∣
Ω

+
(
σ(P) − γ T I

) ∣∣
Ω

.

4 Method of fundamental solutions

Step 1. For the first step of the algorithm described above, consider the
fundamental solution, F, of the heat balance equation (10a) for two-dimensional
steady-state heat conduction in an isotropic homogeneous medium [2], namely

F(x, ξ) = − 1
2π

log ‖x− ξ‖, x ∈ Ω, (13)

where x = (x1, x2) is a collocation point and ξ = (ξ1, ξ2) ∈ R
2 \ Ω

is a singularity or source point. The main idea in the MFS is to approximate
the temperature in the solution domain by a linear combination of fundamental

solutions with respect to NLs singularities,
{
ξ(n)

}NL
s

n=1
, in the form

T(x) ≈ TNL
s
(c(1), ξ;x) =

NL
s∑

n=1

c(1)n F
(
x, ξ(n)

)
, x ∈ Ω , (14)

where c(1) =
[
c(1)1 , . . . , c(1)

NL
s

]T
∈ R

NL
s and ξ ∈ R

2NL
s is a vector containing the

coordinates of the singularities
{
ξ(n)

}NL
s

n=1
. From equations (9) and (13) it follows

that the normal heat flux, through a curve defined by the outward unit normal
vector n(x), can be approximated on the boundary ∂Ω by

q(x) ≈ qNL
s
(c(1), ξ;x) = −

NL
s∑

n=1

c(1)n

[
κ∇xF

(
x, ξ(n)

) · n(x)
]
, x ∈ ∂Ω . (15)

Next, we select NTc collocation points,
{
x(n)

}NT
c

n=1
⊂ ΓT, and Nqc collocation

points,
{
x(N

T
c +n)

}Nq
c

n=1
⊂ Γq, where NTc + Nqc = NLc , and collocate the boundary

conditions (10b) and (10c) to obtain the following system of linear equations with
respect to the unknown coefficients c(1) ∈ R

NL
s :

A(11) c(1) = f (1) . (16)

Here A(11) ∈ R
NL

c ×NL
s is the corresponding matrix whose elements are

calculated from eqns (14) and (15), respectively, while f (1) ∈ R
NL

c is the right-
hand side vector containing the corresponding discretised Dirichlet and Neumann
data as given by eqns (10b) and (10c), respectively.
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Step 2. The MFS approximation for the particular solution to the non-
homogeneous equilibrium equations (5) in R

2 is given by

u(P)(y) ≈ u(P)NL
s
(c(1), ξ;y)

= −αT
4π

(
1 + ν

1 − ν

) NL
s∑

n=1

c(1)n log ‖y − ξ(n)‖ (y − ξ(n)
)
, y ∈ R

2 \
NL

s⋃
n=1

{
ξ(n)

}
.

(17)

As a direct consequence of approximation (17), the corresponding particular
traction vector on the boundary ∂Ω is approximated as

t(P)(y) ≈ t(P)NL
s
(c(1), ξ;y)

= −GαT
2π

(
1 + ν

1 − ν

) NL
s∑

n=1

c(1)n

[
1

1 − 2ν

(
log ‖y − ξ(n)‖ + ν

)
n(y)

+

(
y − ξ(n)

) · n(y)

‖y − ξ(n)‖2
(
y − ξ(n)

)]
, y ∈ ∂Ω ,

(18)

while the term
(
t(P) − γ Tn

)
is approximated on ∂Ω by

t(P)(y) − γ T(y)n(y) ≈ t(P)NL
s
(c(1), ξ;y) − γ TNL

s
(y)n(y)

= −GαT
2π

(
1 + ν

1 − ν

) NL
s∑

n=1

c(1)n

[(
log ‖y − ξ(n)‖ − ν

1 − 2ν

)
n(y)

+

(
y − ξ(n)

) · n(y)

‖y − ξ(n)‖2
(
y − ξ(n)

)]
, y ∈ ∂Ω .

(19)

Note that once the coefficients, c(1) ∈ R
NL

s , corresponding to the thermal
problem (10a)–(10c) are retrieved by solving eqn (16), the particular solutions for
the boundary displacement vector on Γt and boundary traction vector on Γu are
expressed via eqns (17) and (18), respectively.

Step 3. In the case of the Cauchy-Navier system associated with the
two-dimensional isotropic linear elasticity, the fundamental solution for the
displacement vector, U = [Uij ]1≤i,j≤2, is given by [6]

Uij(y, η) =
1

8πG(1 − ν)

[
− (3 − 4ν) log ‖y − η‖ δij

+
yi − ηi

‖x − η‖
yj − ηj

‖x− η‖

]
, i, j = 1, 2 ,

(20)

where y = (y1, y2) ∈ Ω is a collocation point, η = (η1, η2) ∈ R
2 \ Ω is a

singularity and δij is the Kronecker-delta symbol. On differentiating eqn (16) with
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respect to yk, k = 1, 2, one obtains the derivatives of the fundamental solution
for the displacement vector, denoted by ∂yk

Uij(y, η), where ∂yk
≡ ∂ /∂yk . By

combining eqns (8b) and (20), the fundamental solution for the traction vector,
T = [Tij ]1≤i,j≤2, in the case of two-dimensional isotropic linear elasticity is
obtained as [6]

T1k(y, η) =
2G

1 − 2ν

[
(1 − ν) ∂y1U1k(y, η) + ν ∂y2U2k(y, η)

]
n1(y)

+ G
[
∂y2U1k(y, η) + ∂y1U2k(y, η)

]
n2(y), k = 1, 2,

(21a)

and

T2k(y, η) = G
[
∂y2U1k(y, η) + ∂y1U2k(y, η)

]
n1(y)

+
2G

1 − 2ν

[
ν ∂y1U1k(y, η) + (1 − ν) ∂y2U2k(y, η)

]
n2(y), k = 1, 2.

(21b)

Analogously to the MFS approach for the thermal problem, we now consider

NEs singularities,
{
η(n)

}NE
s

n=1
, and approximate the displacement vector, u(H),

associated with the homogeneous equilibrium equation (12a) in the solution
domain by a linear combination of the displacement fundamental solutions (20)
with respect to these singularities, i.e.

u(H)(y) ≈ u(H)NE
s
(c(2), η;y) =

NE
s∑

n=1

U(y, η(n)) c(2)n , y ∈ Ω , (22)

where c(2)n =
[
c(2)n;1, c

(2)
n;2

]T
∈ R

2, 1 ≤ n ≤ NEs , c(2) =
[(

c(2)1
)T

, . . . ,
(
c(2)
NE

s

)T]T
∈ R

2NE
s and η ∈ R

2NE
s is a vector containing the coordinates of the singularities{

η(n)
}NE

s

n=1
. In a similar manner, the traction vector, t(H), associated with the

homogeneous equilibrium equation (12a) is approximated by a linear combination
of the traction fundamental solutions (21), namely

t(H)(y) ≈ t(H)NE
s
(c(2), η;y) =

NE
s∑

n=1

T(y, η(n)) c(2)n , y ∈ ∂Ω . (23)

By collocating the boundary conditions (12b) and (12c) at the collocation points{
y(n)

}Nu
c

n=1
⊂ Γu and

{
y(N

u+n)
}Nt

c

n=1
⊂ Γt, respectively, where Nu + Nt = NEc ,

one obtains the following system of linear equations with respect to the unknown
coefficients c(2) ∈ R

2NE
s :

A(22) c(2) = f (2) − A(21) c(1) . (24)

Here A(22) ∈ R
2NE

c ×2NE
s is the corresponding matrix whose elements are

calculated from eqns (22) and (23), respectively, f (2) ∈ R
2NE

c is the right-hand

Boundary Elements and Other Mesh Reduction Methods XXXIV  45

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Modelling and Simulation, Vol 53, © 201  WIT Press2



side vector containing the corresponding discretised Dirichlet and Neumann data
as given by eqns (12b) and (12c), respectively, and the elements of the matrix
A(21) ∈ R

2NE
c ×NL

s are determined from those of the matrices that approximate
u(P)(y(n)) and

(
t(P) − γ Tn

)
(y(n)), 1 ≤ n ≤ NEc , according to eqns (12a),

(12b), (17) and (19).
Step 4. Having determined the coefficients, c(2) ∈ R

2NE
s , the approximations

of the boundary displacement, u
∣∣
Γt

, and traction vectors, t
∣∣
Γu

, are obtained via
the superposition principle and eqns (17), (19), (22) and (23).

It should be mentioned that, in order to uniquely determine the solutions
c(1) ∈ R

NL
s and c(2) ∈ R

2NE
s , the corresponding numbers of boundary collocation

points and singularities must satisfy the inequalities NLs ≤ NLc and NEs ≤ NEc ,
respectively. For exact boundary data, these systems can be solved by a direct
method, such as the least-squares method or, equivalently, the inversion of the
normal equation. However, in the case of perturbed boundary data, such an
approach would produce a highly unstable solution and hence systems (16) and
(24) should be solved, in a stable manner, by using e.g. the Tikhonov regularization
method [7].

5 Numerical results

We consider an isotropic linear thermoelastic material which occupies the annular

domain Ω =
{
x ∈ R

2
∣∣∣Rint < ‖x‖ < Rout

}
, where Rint = Rout/2 = 1.0,

and is characterised by the following material constants: G = 4.80 × 1010N/m2,
ν = 0.34, κ = 4.01 W m−1K−1 and αT = 16.5 × 10−6 ◦C−1. We also assume
that the thermoelastic fields associated with the material occupying the domain Ω
correspond to constant inner and outer temperatures, Tint = Tout/2 = 1◦C, as
well as constant inner and outer radial pressures, σint = σout/2 = 1010N/m2,
respectively. Such a direct problem admits the following analytical solution:

T(an)(x) = Tout
log (‖x‖ /Rint )
log (Rout /Rint )

+ Tint
log (Rout /‖x‖ )
log (Rout /Rint )

, x ∈ Ω , (25a)

q(an)(x) = −κ
Tout − Tint

log (Rout /Rint )
x · n(x)
‖x‖2 , x ∈ ∂Ω , (25b)

u(an)(x) =
[
αT
2

1 + ν

1 − ν

Tout − Tint
log (Rout /Rint )

log ‖x‖

+
1

2G

(
V

1 − ν

1 + ν
+ W

1
‖x‖2

)]
x , x ∈ Ω ,

(25c)

t(an)(x) =


−σout n(x) , x ∈ Γout ≡

{
x ∈ ∂Ω

∣∣∣ ‖x‖ = Rout
}

−σint n(x) , x ∈ Γint ≡
{
x ∈ ∂Ω

∣∣∣ ‖x‖ = Rint
}

,
(25d)
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where

V ≡ −σ
(H)
outR

2
out − σ

(H)
int R2int

R2out − R2int
, W ≡

(
σ
(H)
out − σ

(H)
int

)
R2outR

2
int

R2out − R2int
, (26a)

σ
(H)
out ≡ σout − γ Tout + GαT

1 + ν

1 − 2ν

(
1

1 − ν
log Rout + 1

)
, (26b)

and

σ
(H)
int ≡ σint − γ Tint + GαT

1 + ν

1 − 2ν

(
1

1 − ν
log Rint + 1

)
. (26c)

In this study, we have considered NLc = NEc = N collocation points on ∂Ω =
Γout∪Γint, such that 2N

/
3 and N

/
3 uniformly distributed collocation points have

been taken on the outer Γout and inner boundaries Γint, respectively. According to
the notations used in Section 4, we have NTc = Nt

c = N and Nqc = Nu
c = 0.

We have also considered NLs = NEs = M uniformly distributed singularities
corresponding to the outer (2M

/
3 singularities) and the inner boundaries (M

/
3

singularities), which are preassigned and kept fixed throughout the solution

process on the pseudo-boundaries Γ̃out =
{
x ∈ R

2
∣∣∣ ‖x‖ = Rout + d1

}
and

Γ̃int =
{
x ∈ R

2
∣∣∣ ‖x‖ = Rint − d2

}
, respectively, where 0.05 ≤ d1 ≤ 1.0 and

0.02 ≤ d2 ≤ 0.9.
In order to asses the accuracy and convergence of the proposed MFS approach,

for any real-valued function f : ∂Ω −→ R , we define the corresponding pointwise
normalised error of f at x ∈ ∂Ω and the maximum normalised error of f on ∂Ω
by

err(f(x)) =

∣∣f (num)(x) − f(x)
∣∣

maxy∈∂Ω

∣∣f(y)
∣∣ , x ∈ ∂Ω , (27a)

and
Err(f) = max

x∈∂Ω
err(f(x)) , (27b)

respectively, where f (num)(x) denotes an approximate numerical value for f(x),
x ∈ ∂Ω. Analogously, one can define the pointwise normalised error of f at x ∈ Ω
and the maximum normalised error of f inside the domain Ω.

Figs. 1(a)–(d) present the numerical results for the x1−component of the
displacement on the boundary ∂Ω, in terms of the maximum normalised error
Err(u1) defined by eqn (27b), obtained using the proposed approach, various
numbers of boundary collocation points and singularities, i.e. M = N ∈
{48, 60, 72, 84}, d1 ∈ [0.05, 1.0] and d2 ∈ [0.02, 0.9]. It can be seen from these
figures that the numerical solution for the displacement u1

∣∣
∂Ω

is an accurate
and convergent approximation to its corresponding exact solution with respect
to increasing the number of collocation points, as well as the distances to the
pseudo-boundaries Γ̃out and Γ̃int, respectively. Although not presented, it is
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reported that similar results have been obtained for the x2−component of the
displacement, traction vector, temperature and normal heat flux on ∂Ω, as well as
the displacement vector, stress tensor and temperature field inside the domain Ω.
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Figure 1: The maximum normalised error Err(u1) on ∂Ω as a function of the
distances d1 and d2, obtained using various numbers of collocation
points and sources, namely (a) M = N = 48, (b) M = N = 60,
(c) M = N = 72 and (d) M = N = 84.
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6 Conclusions

In this paper, the solution of direct problems in two-dimensional linear isotropic
thermoelasticity was investigated using the MFS in conjunction with the MPS.
This approach is based on the development of a novel particular solution of the
non-homogeneous equations of equilibrium associated with a two-dimensional
isotropic linear thermoelastic material which depends entirely on the MFS
approximation of the boundary value problem for the heat conduction equation.
The numerical results obtained show the convergence and accuracy of the proposed
method.
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