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Abstract 
A meshless method for the solution of 2D Helmholtz equation has been 
developed by using the Boundary Integral Equation (BIE) combined with Radial 
Basis Function (RBF) interpolations. BIE is applied by using the fundamental 
solution of the Helmholtz equation, therefore domain integrals are not 
encountered in the method. The method exploits the advantage of placing the 
source point always in the centre of circular sub-domains in order to avoid 
singular or near-singular integrals. Three equations for two-dimensional (2D) or 
four for three-dimensional (3D) potential problems are required at each node. 
The first equation is the integral equation arising from the application of the 
Green’s identities and the remaining equations are the derivatives of the first 
equation in respect to space coordinates. RBF interpolation is applied in order to 
obtain the values of the field variable and partial derivatives at the boundary of 
the circular sub-domains, providing in this way the boundary conditions for 
solution of the integral equations at the nodes (centres of circles). The accuracy 
and robustness of the method has been tested on some analytical solutions of the 
problem. Two different RBFs are used, namely 1)ln()( 2

1  yxRRRf  and 

1)ln()( 224
2  xxyyxRRRf . The latter has been found to produce 

more accurate results. 
Keywords: meshless method, 2D Helmholtz equation, circular sub-domains, 
radial basis functions. 

1 Introduction 

The 2-D modelling of acoustics has been of significant importance for a variety 
of engineering problem in areas such as ultrasonics, microfluidics, aeoracoustics, 
etc. The numerical modelling of the problem is essential in case a complete 
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theoretical approach is not possible, i.e. multiphase flows or in the absence of 
experimental research. Hence, robust numerical algorithms are needed. The 
robustness of the numerical scheme plays a more important role whilst dealing 
with high frequencies since the numerical pollution and dispersion affect the 
accuracy in a significant way [1]. Meshless methods have received attention in 
the last a few decades due to their several advantages over usual boundary 
element methods hence some approaches, using Galerkin method [2] and hybrid 
boundary node method [3], are present for solving the Helmholtz equation. In 
this report, we present a truly meshless Radial Basis Integral Equation Method 
(RBIEM) in order to solve the governing Helmholtz equation in a 2-D setting.   
     In the direct BEM formulation for the Helmholtz equation, difficulties in 
implementation arise due to singular integrals which require a special treatment 
[4], and furthermore the solution loses its accuracy significantly in the interior 
part of the domain close to the boundary which could be handled by integral 
transformations as [5] performed contour integration.  
     Similarly to the local boundary integral equation method [6], the RBIEM [7] 
implements the BEM equation over circular sub-domains where the source 
points are placed in the centres of the circles, which eliminates the above 
mentioned singular integrals. Three equations at each source point for 2D 
problems are solved, one for the field variable using the direct BEM formulation 
while the other two equations are the derivatives of the original equation in 
respect to spatial coordinates at the source point. The field variable and gradients 
over the circular boundaries are interpolated by using radial basis functions 
(RBFs). The augmented thin plate spline (ATPS) and fourth order ATPS with 
second order polynomial augmentation are used in this work. The fundamental 
solution, Hankel function of the second kind, of the interior 2D Helmholtz 
problem is used. The matrix coefficients resulting from the integration over the 
circular boundaries will be same provided that the radius remains the same, 
therefore they are evaluated only once.  
     The RBIEM differs from the LBIE in certain aspects [7]: (i) for the solution 
on the boundary, the LBIE replaces the circular domain with part of the global 
boundary and the remaining part of the circle, whereas the RBIEM keeps the 
circular integration approach on the. (ii) the LBIE uses the concept of 
“companion solution” in order to avoid the gradients/normal derivatives inside 
the problem domain while the RBIEM solves for the potential and the partial 
derivatives at each source node including the global boundary of the domain. (iii) 
The boundary conditions in the RBIEM are directly imposed at the source points 
on the global boundary, each replacing one of the three equations.  
     Since the integral domains are always circular, the integrals are regular 
regardless of the order of the derivative; though the integral kernels for the 2D 
Helmholtz equation include Hankel functions up to second order, whose 
evaluation is a challenging task [4, 5].      
     The method is briefly described in Sections 2 and 3, while numerical 
examples are presented in Section 4 with the conclusions in Section 5. The 
details concerning the solution procedures in the RBIEM can be found in [7]. 
 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

322  Boundary Elements and Other Mesh Reduction Methods XXXIII



2 The radial basis integral equation method 

In this section the radial basis integral equation method (RBIEM) is introduced. 
     Let us consider the following Helmholtz equation:  
 

 0=)()( 22 ruk  (1) 

  
where u(r) is a potential field, r is a position vector. Given a point r inside a 
domain , by applying the Green integral formula equation (1) can be 
transformed into the following integral form:  
 

 0)(),()(),()()( **      dqrudurqrur  (2) 

 
where u*(r,) is the fundamental solution of the Helmholtz problem, 

nuq  )/(=)(   and  nrurq  )/,(=),( **  . For a 2D problem the fundamental 

solution is given by 
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where J0 and Y0 are Bessel functions of first and second kind, respectively and R 
is the distance from the point of application of the concentrated unit source to 
any other point under consideration, i.e. R = |r – |. The derivative of the 
fundamental solution could be evaluated analytically; 
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     The constant (r) has value from 0 to 1 being equal to 1/2  for smooth 
boundaries and 1 if the source point r is inside the domain. 
     The proposed formulation solves in each interior node three integral equations 
in order to obtain the potential u, and the partial derivatives u/xj. Equation (6) 
is used to find the potential while the equations for derivatives u/xj are 
obtained by differentiating (2) in respect to xj, where xj are components of r. The 
derivatives of (2) are given below:  
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     Note that the derivatives of the fundamental solution and its gradient 
appearing in the integral Kernels of Eqn. (6) can be evaluated analytically as 
given below:  
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     The discretized form of (6) for the unknown u/xj at node i is given as:  
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     The normal derivative q in (9) can be written as:  
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where nk are components of the unit normal vector. According to (10) equation 
(2) can be discretized as:  
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where Gijm = Gijnm. Substituting q  from (10) into (9) yields:  
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where Ginp = Ginnp. Equation (11) can be written in matrix form as  
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and equations (12) can be written as:  
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3 Interpolation for the unknown values at the circular 
boundary of the sub-domain 

In order to perform the integration over the local boundaries of the circular sub-
domains, values of the potentials and partial derivatives must be known on the 
circles. In this work four quadratic continuous elements were employed to 
perform the integration over the circular boundaries. Eight fictitious nodes were 
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introduced on the circular boundaries in order to define the four quadratic 
elements used in the integration over the circles.  The values of the field 
variables at the eight nodes were determined through interpolation using the 
values of field variables at neighbouring nodes. The final system of equations 
solves for potentials and derivatives only at specified nodes for solution of the 
problem, which are located at centres of circular sub-domains, and not at the 
fictitious nodes on the circular boundaries. Only nodes at centres of sub-domains 
are used in the interpolation for obtaining the values of field variables at 
fictitious nodes on the circular boundaries. The unknown potential at one of the 
eight nodes, denoted by  is approximated by n neighbouring nodes xi by the 
following formula: 
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i
ii axfu
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     The n neighbouring nodes can be given as an input to the code, which would 
in part reduce the meshless nature of this approach, or can be generated 
automatically as was done in the present case. Two possibilities were considered: 
(i) to select the interpolation nodes by defining a suitable radius around  which 
would contain the desired number of interpolation nodes, or (ii) to define the 
required number of interpolation nodes n and let the numerical scheme find the 
nearest n nodes to . In this case the option (ii) was adopted since it offered 
better control over the number of nodes used in the interpolation of the field 
variables.  
     Here f is the ATPS function and ai are the unknown coefficients. The 
unknown coefficients ai are determined by constructing a system of equations 
which is obtained by applying (15) on neighbour nodal points xi:  
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     The following system of equations is formed 
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 (17) 

where u0 = [u(x1), u(x2), …, u(xn)]
T, F0 = fji = f(xj,xi),    j = 1,2, …,n; i = 1,2,…,n. 

     The unknown coefficients ai are determined by: 

 0= uFa -1
0  (18) 

     The potential at point  can be written as 
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where F(,xi) = [f(,x1), f(,x2),…, f(,xn)]. 
     The partial derivatives at  are obtained as: 
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where q0l = [ql(x1), ql(x2),…, ql(xn)]
T and ql = u/xl . 

     Equation (20) produces more accurate approximation of the partial 
derivatives.  
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4 Numerical results 

4.1 Solution of the helmholtz equation 

The Helmholtz Eqn. is used in order to verify the validity of the approach. A 
square domain with length L=1 at each side is considered. The x /  and 

y /  approach zero on the lines x=0 and y=0, therefore the domain is shifted 

(0.5, 0.5) from the origin for a better visualisation of relative error. The 
following boundary conditions are applied:  
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which yield the solution 0J (kr) i (cos (kx) sin (ky))            . 

     The ATPS is used in all of the RBF computations. The built-in Fortran 
functions getri and solver pardiso are used to compute the inverse matrix formed 
in RBF interpolation and to solve the overall sparse system, respectively. The 
models of sizes up to 361201 source nodes in the domain with uniform 
distribution, equivalent to 1,083,603 degrees of freedom (DOF), have been 
solved on a workstation Intel Xeon 3.2 GHz. 

4.1.1 The parameters that affect the efficiency of the method 
In this section, we investigate the parameters that affect the efficiency and 
accuracy of the algorithm. Although the results obtained for 

(ky))sin   (kx) (cos i  (kr) J0  are presented here, these optimal 

values show the same behaviour when tested individually with the functions 
Re(Φ) and Im(Φ). The effect of two major components: (i) the RBF 
approximation and (ii) circular integration around nodes, on the numerical error 
is analyzed. Keeping the number of the nodes used in the computations 
sufficiently large, numerical experiments were performed in order to determine 
more optimal values for each of the parameters. As the base case values we set 
Nodes=10201, Nω=24, Nd=16, Nb=12, Rd= Dx and Rb= Dx. The results are 
displayed by examining the L2-norms for the components Re(Φ), Re( x / ), 

Re( y / ), Im(Φ), Im( x / ) and Im( y / ), where k is wavenumber; 

λ is wavelength; Nω is the number of fictitious points used in the circular 
integration around each node; Rd is the radius of the circular sub-domain in the 
 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

326  Boundary Elements and Other Mesh Reduction Methods XXXIII



domain; Rb is the radius of the circular sub-domain on the boundary; Nd is the 
number of points used in RBF interpolation in the domain; Nb is the number of 
points used in RBF interpolation on the boundary; Dx is the distance between 
nodes in x and y directions in case of uniform distribution.  
The L2-norm error for Φ is defined as 

 %100
)(

=

1

2

1

2

2











N

i i

N

i

n
ii

Le  (25) 

where N is the number of nodes, n
i  the potential at node i by numerical 

method and Φi the analytical solution at node i.  
     Firstly, we investigated the parameters related to the circular integration 
around nodes. Tests were carried out in order to determine the optimal 
integration radius R by prescribing analytical solution values of both potential 
and the derivatives on the circular boundary. We conclude that a ratio Rd/λ   
0.01 is required for accurate results in the computations. Next, the influence of 
ratio Rd/Dx on the accuracy of the solution has been investigated. The numerical 
experiments suggested a value of Rd/Dx = 1 as one leading to accurate results, as 
can be seen in Figure 1.   
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Figure 1: L2 Norm error for different Rd/Dx with Nodes=10201, Nω=24, 
Nd=16, Nb=12 and Rb= Dx. 
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     The number of neighbouring interpolation points used in the RBF has been 
increased up to 48, which is sufficiently large. The results show slight 
improvement up to this point, whereas numerical error dominates afterwards. 
The results reach a nearly stable behaviour for Nd ≥ 28 (Fig. 2).   Nevertheless, a 
choice of 16 gives the best accuracy which is also preferable to the large 
numbers due to the significant reduction in the sparsity of the overall matrix and 
computation time in that regard.   
     The behaviour of the method is investigated near the boundaries by varying 
the integration radius Rb and the number of nodes in the RBF for the nodes on 
the boundary, Nb, close to the boundary or far inside the domain. Note that 
keeping the same value would decrease the computation time since the circular 
integration results in the same coefficients for fixed radius and number of 
boundary elements used. Reducing the Rb and Nb show slightly more accurate 
results, hence related figures are not shown here.  

5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Nodes in the RBF

L
2 N

o
rm

s

 

 

Re()

Re(/x)

Re(/y)

Im()

Im(/x)

Im(/y)

 

Figure 2: L2 Norm error for different Nd with Nodes=10201, Nω=24, Rd= Dx 

and Rb= Dx. 

     The overall convergence of the method is stated clearly by the Figure 3 where 
the computations are carried with up to 360201 nodes. 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

328  Boundary Elements and Other Mesh Reduction Methods XXXIII



0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

 

 
L

2 N
o

rm
s

Number of Nodes

Re()

Re(/x)

Re(/y)

Im()

Im(/x)

Im(/y)

 

Figure 3: L2 Norm convergence with increasing the number of Nodes, 
Nω=24, Nd=16, Nb=12, Rd= Dx and Rb= Dx.. 

4.2 Example 2 

Another solution to the Helmholtz equation is used in order to test the effect of 
the RBFs. A square domain with length L=1 at each side is considered. The 
following boundary conditions are applied:  
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which yield the solution  = Sin 



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     Two different RBFs are used:  

 (i)  1)ln()( 2
1  yxRRRf  (30) 

 (ii) 1)ln()( 224
2  xxyyxRRRf  (31) 

 
     The tests related to the best accuracy of the method were performed for the 
second RBF, f2, as well. The optimum parameters were found to be the same 
with the first RBF except the number of fictitious nodes on each circle of 
integration, e.g. Nω=24, Nd=16, Nb=12  and Rb= Dx. For the sake of brevity, 
related figures are not re-plotted here. As seen in Table 1, the solution converges  
 

Table 1:  L2 Norm error comparison for f1 and f2 RBFs with k=6. 

f1 f2  

Re(Φ) 
L2 Norm       

Re(Φ) 
L2 Norm       

Number of 
Nodes 

2.4937 0.1624 441 

0.7906 0.0348 1681 

0.2887 0.0024 6561 

0.1849 0.0033 10201 

0.0237 0.0071 40401 

0.0149 0.0075 63001 

0.0280 0.0081 160801 

0.0624 0.0078 251001 

Table 2:  L2 Norm error for f2 RBFs with high wavenumbers. 

k 
Re(Φ)  

(L2 Norm) 
Re(/x) 
(L2 Norm) 

Re(/x) 
(L2 Norm) Nodes 

20 0.0156 0.0242 0.0207 63001 

36.2 0.0557 0.0489 0.0536 251001 

43.18 0.0543 0.0515 0.0480 361201 

50.02 0.0457 0.0541 0.0506 361201 

61.36 0.0573 0.0554 0.0543 361201 

72.05 0.0962 0.0989 0.1039 361201 

78.29 0.2180 0.2163 0.2156 361201 
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more rapidly using f2 in comparison to f1. Therefore, the usage of f2 allows us to 
solve the equation with higher wavenumbers. In Table 1, we can also notice the 
phenomena related to the optimum choice of Rd/λ, namely a further increase of 
the source nodes after an accurate solution is reached yields the so called 
pollution effect. Finally in Table 2, the results are provided with the high 

wavenumbers for the analytical solution Sin  kx)2/2(   Sin  ky)2/2( . The 

results are acceptable up to k=78.29. The resonant frequencies were avoided as 
much as possible while choosing the wavenumbers.  

5 Conclusions 

A meshless method for the solution of 2D Helmholtz equation has been 
developed by using the Boundary Integral Equation (BIE) combined with Radial 
Basis Function (RBF) interpolations. BIE is applied by using the fundamental 
solution of the Helmholtz equation, therefore domain integrals are not 
encountered in the method. The method exploits the advantage of placing the 
source point always in the centre of circular sub-domains in order to avoid 
singular or near-singular integrals. RBF interpolation is applied in order to obtain 
the values of the field variable and partial derivatives at the boundary of the 
circular sub-domains, providing this way the boundary conditions for solution of 
the integral equations at the nodes (centres of circles). The accuracy, robustness 
and efficiency of the method have been validated on some analytical solutions of 
the problem. The parameters emerging from the BIE and RBF, such as radius of 
circular integration, number of neighbouring nodes in the RBF interpolation, 
choice of RBF etc., have been tested to certain extent to determine more optimal 
values which yield to more accurate solutions. In the placement of source nodes, 
a distance of 0.01-0.02 of the wavelength between the nodes is essential to catch 
the wave behaviour precisely. An integration radius equal to this distance is 
found to give more accurate results. Among the two RBFs used, 

1)ln()( 224
2  xxyyxRRRf  has shown more rapid convergence 

and accuracy than 1)ln()( 2
1  yxRRRf .  
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