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Abstract

This paper presents a new numerical procedure for time-dependent problems. The
partition of unity method is employed to incorporate the moving least square
and one-dimensional integrated radial basis function networks (MLS-1D-IRBFN)
techniques in an approach that produces a very sparse system matrix and offers
as a high order of accuracy as that of global 1D-IRBFN method. Moreover, the
proposed approach possesses the Kronecker-δ property which helps impose the
essential boundary condition in an exact manner. Spatial derivatives are discretised
using Cartesian grids and MLS-1D-IRBFN, whereas temporal derivatives are
discretised using high-order time-stepping schemes, namely standard θ and
fourth-order Runge–Kutta methods. Several numerical examples including two-
dimensional diffusion equation, one-dimensional advection-diffusion equation and
forced vibration of a beam are considered. Numerical results show that the current
methods are highly accurate and efficient in comparison with other published
results available in the literature.
Keywords: time-dependent problems, integrated radial basis functions, moving
least square, partition of unity, Cartesian grids.

1 Introduction

In 1990, Kansa proposed a collocation scheme based on multiquadric (MQ) radial
basis functions (RBF) for the numerical solution of partial differential equations
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(PDEs) [1]. Their numerical results showed that MQ scheme yielded an excellent
interpolation and partial derivative estimates for a variety of two-dimensional
functions over both gridded and scattered data. The main drawback of the RBF
based method is the lack of mathematical theories for the choice of the RBF
shape parameter. Since this original work, many meshfree methods based on RBF
have been proposed. Sharan et al. [2] employed the multiquadric approximation
scheme for solution of elliptic partial differential equations using the data points
in arbitrary locations with an arbitrary ordering. Zerroukat et al. [3] proposed
explicit and implicit meshless methods based on global RBFs for linear advection-
diffusion-type partial differential equations on arbitrary collocation points system.

In recent years, a different approach for solving PDEs is the so-called Cartesian
grid method where the governing equations are discretised on a Cartesian grid
which does not conform to the immersed boundaries. This significantly reduces
the grid generation cost and has a great potential over the conventional body-
fitted methods when solving problems with moving boundaries and complicated
geometry. Ye et al. [4] developed a finite-volume based Cartesian grid method
for simulating two-dimensional unsteady, viscous, incompressible flows with
complex immersed boundaries. In their method, the immersed boundary is
represented by a series of piecewise linear segments. Based on these segments,
the control volume near the immersed boundary is reformed into a body-fitted
trapezoidal shape. A one-dimensional integrated radial basis function networks
(1D-IRBFN) collocation method for the solution of second- and fourth-order
PDEs was presented by Mai-Duy and Tanner [5]. Along grid lines, 1D-IRBFN
are constructed to satisfy the governing differential equations with boundary
conditions in an exact manner. The 1D-IRBFN method enjoys spectral accuracy
and exponential convergence for certain problems. In this method, the Cartesian
grids were used to discretise both rectangular and non-rectangular problem
domains. The computational cost used for the Cartesian grid generation is
negligible in comparison with that required for the body-fitted mesh. Le-Cao
et al. [6] presented a numerical collocation procedure based on Cartesian grids and
1D-IRBFN for simulation of natural convection defined in 2D multiply connected
domains and governed by a stream function-vorticity-temperature formulation.
Ngo-Cong et al. [7] extended this method to investigate free vibration of composite
laminated plates based on first-order shear deformation theory. The present paper
deals with the development of MLS-1D-IRBFN methods based on two frameworks
of semi-discrete and fully discrete schemes for solving several numerical examples
including diffusion equation, advection diffusion equation and forced vibration of
a beam. In the semi-discrete scheme, the first stage is the spatial discretisation
in which the spatial derivatives of the PDEs are discretised to obtain a system of
ordinary differential equations (ODEs).The system is then advanced in time using
ODE solvers (e.g. fourth-order Runge–Kutta scheme) to obtain the unknowns for
each time step. In the fully discrete scheme, the time derivatives of the PDEs are
first discretised using high-order time-stepping schemes (standard θ-scheme) to
obtain a sequence of steady problems. The spatial discretisation is then performed
to obtain a full discretisation which is in the form of a system of algebraic
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equations. In the following, Section 2 presents the MLS-1D-IRBFN methods.
Several numerical examples are then used to demonstrate the performance of the
proposed methods in Section 3. Section 4 concludes the paper.

2 Moving least square – one-dimensional-integrated radial
basis function networks

A schematic outline of the MLS-1D-IRBFN method is depicted in Fig. 1.
For brevity, 3-node support domains are presented here. Similar explanation is
applicable in the case of 5-node support domains. On an x-grid line [l], a global
interpolant for the field variable at a grid point xi is sought as

u(xi) =
n∑

j=1

φj(xi)uj(xi), (1)

where {φj}n
j=1 is a set of the partition of unity functions constructed using MLS

approximants, uj(xi) is the nodal function value obtained from a local interpolant
represented by 1D-IRBFNs, and n is the number of nodes in the support domain
of xi. In (1), MLS approximants are presently based on linear polynomials, which
are defined in terms of 1 and x. Relevant derivatives of u at xi can be obtained by
differentiating (1)

∂u(xi)
∂x

=
n∑

j=1

(
∂φj(xi)

∂x
uj(xi) + φj(xi)

∂uj(xi)
∂x

)
, (2)

∂2u(xi)
∂x2

=
n∑

j=1

(
∂2φj(xi)

∂x2
uj(xi) + 2

∂φj(xi)
∂x

∂uj(xi)
∂x

+ φj(xi)
∂2uj(xi)

∂x2

)
,

(3)

Figure 1: MLS-1D-IRBFN scheme, � a typical [j] node.

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

Boundary Elements and Other Mesh Reduction Methods XXXIII  311



where the values uj(xi), ∂uj(xi)/∂x and ∂2uj(xi)/∂x2 are calculated from 1D-
IRBFNs with ns nodes.

2.1 One-dimensional IRBFN

Consider a segment [j] with ns nodes on an x-grid line [l] as shown in Fig. 1. The
variation of the nodal function uj along this segment is sought in the IRBF form.
The second-order derivative of uj is decomposed into RBFs; the RBF network is
then integrated once and twice to obtain expressions for the first-order derivative
of uj and the function uj itself as follows.

∂2uj(x)
∂x2

=
ns∑

k=1

w(k)G(k)(x), (4)

∂uj(x)
∂x

=
ns∑

k=1

w(k)H
(k)
[1] (x) + c1, (5)

uj(x) =
ns∑

k=1

w(k)H
(k)
[0] (x) + c1x + c2, (6)

where
{
w(k)

}ns

k=1
are RBF weights to be determined;

{
G(k)

}ns

k=1
are known

RBFs, e.g., for the case of multiquadrics G(k)(x) =
√

(x − x(k))2 + a(k)2, a(k)

– the RBF width; H
(k)
[1] (x) =

∫
G(k)(x)dx; H

(k)
[0] (x) =

∫
H
(k)
[1] (x)dx; and c1 and

c2 are integration constants which are also unknown.
It is more convenient to work in the physical space than in the network-weight

space. The RBF coefficients including two integration constants can be related
to the physically meaningful nodal variable values. The second- and first-order
derivatives of the variable u are expressed in terms of nodal variable values as
follows.

∂2u(x)
∂x2

= D̄2xû[j] + k2x(x),
∂u(x)

∂x
= D̄1xû[j] + k1x(x), (7)

where k1x and k2x are scalars whose values depend on x and boundary values; and
D̄1x and D̄2x are known vectors of length ns.

By application of equation (7) to ns nodes on the segment [j], the second- and
first-order derivatives of uj at node xi can be determined as

∂2ûj(xi)
∂x2

= M̂2x(idk,:)û
[j] + k̂2x(idk), (8)

∂ûj(xi)
∂x

= M̂1x(idk,:)û
[j] + k̂1x(idk), (9)

where M̂1x and M̂2x are known matrices of dimension ns × ns; k̂1x and k̂2x are
known vectors of length ns; and idk is the index number indicating the location of
node xi over the local network j.
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2.2 Incorporation of MLS and 1D-IRBFN

By substituting equations (8) and (9) into equations (2) and (3), the second- and
first-order derivatives of the variable u(xi) can be expressed as

∂u(xi)
∂x

= d̂[i]1xû[i] + k
[i]
1x,

∂2u(xi)
∂x2

= d̂[i]2xû[i] + k
[i]
2x. (10)

where û[i] =
(
u(1), u(2), . . . , u(nr)

)T
, nr is the number of nodes in the MLS-1D-

IRBF network [i], k
[i]
1x and k

[i]
2x are known scalars, and d̂[i]1x and d̂[i]2x are known

vectors of length nr.
The values of first- and second-order derivatives of u with respect to x at the

nodal points on the grid line [l] can be given by

∂ûi

∂x
= D̂[l]1xû[l] + k̂

[l]
1x,

∂2ûi

∂x2
= D̂[l]2xû[l] + k̂

[l]
2x, (11)

where û[l] =
(
u(1), u(2), . . . , u(nl)

)T
, k̂
[l]
1x(i) and k̂

[l]
2x(i) are known vectors of

length nl, D̂
[l]
1x(i,idi) and D̂[l]2x(i,idi) are known matrices of dimension nl × nl, and

nl is the number of nodes on the grid line [l].
The values of first- and second-order derivatives of u with respect to x at the

nodal points over the problem domain can be given by

∂ũ

∂x
= D̃1xũ + k̃1x,

∂2ũ

∂x2
= D̃2xũ + k̃2x, (12)

where ũ =
(
u(1), u(2), . . . , u(Nip)

)T
, D̃1x and D̃2x are known matrices of

dimension Nip × Nip; k̃1x and k̃2x are known vectors of length Nip; and Nip

is the total number of interior nodal points.
Similarly, the values of the second- and first-order derivatives of u with respect

to y at the nodal points over the problem domain can be given by

∂ũ

∂y
= D̃1yũ + k̃1y,

∂2ũ

∂y2
= D̃2yũ + k̃2y , (13)

3 Numerical results

The MLS-1D-IRBFN based on 5-node support domains and 5-node 1D-IRBFNs
are applied to solve the following examples.

3.1 Example 1: Two-dimensional diffusion equation

This example is concerned with the following 2D diffusion equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+f(x, y, t) with f(x, y, t) = sin x sin y(2 sin t+cos t), (14)
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Table 1: Two-dimensional diffusion equation: comparison of relative error and
CPU time between 1D-IRBFN and MLS-1D-IRBFN methods. The fully
discrete scheme with standard θ-scheme for temporal discretisation is
employed. (1) 1D-IRBFN, (2) MLS-1D-IRBFN.

Grid ∆t Exact Numerical solution Relative error CPU time (s)

(1) (2) (1) (2) (1) (2)

11 1.0000 −0.389450 −0.387900 −0.387891 3.98E-03 4.00E-03 0.02 0.19

21 0.2500 −0.389450 −0.389404 −0.389400 1.19E-04 1.30E-04 0.16 0.78

31 0.1111 −0.389450 −0.389441 −0.389437 2.29E-05 3.47E-05 1.61 1.92

41 0.0625 −0.389450 −0.389448 −0.389443 7.23E-06 1.93E-05 8.36 3.76

51 0.0400 −0.389450 −0.389449 −0.389444 2.95E-06 1.51E-05 40.97 6.48

61 0.0278 −0.389450 −0.389450 −0.389445 1.42E-06 1.36E-05 127.39 10.47

Table 2: Two-dimensional diffusion equation: MLS-1D-IRBFN solutions at the
interior point x = 0.8, y = 0.8 in comparison with those of BEM [9]
and 1D-IRBFN methods with the same time step ∆t = 0.25. The same
grid of 21× 21 is employed for 1D-IRBFN and MLS-1D-IRBF methods,
while a much finer mesh is used for BEM. The fully discrete scheme
with standard θ-scheme for temporal discretisation is employed. (1) 1D-
IRBFN, (2) MLS-1D-IRBFN.

T Exact Numerical solution Relative error

BEM (1) (2) BEM (1) (2)

0.25 0.127314 0.126800 0.127206 0.127205 4.04E-03 8.45E-04 8.55E-04

0.50 0.246712 0.245300 0.246679 0.246676 5.72E-03 1.34E-04 1.45E-04

0.75 0.350771 0.348500 0.350701 0.350697 6.47E-03 2.00E-04 2.12E-04

1.00 0.433021 0.430000 0.432997 0.432992 6.98E-03 5.48E-05 6.62E-05

1.25 0.488347 0.484800 0.488313 0.488308 7.26E-03 6.98E-05 8.12E-05

1.50 0.513311 0.509400 0.513313 0.513307 7.62E-03 4.23E-06 7.36E-06

1.75 0.506359 0.502400 0.506363 0.506357 7.82E-03 7.23E-06 4.44E-06

2.00 0.467924 0.464100 0.467956 0.467951 8.17E-03 6.89E-05 5.70E-05

2.25 0.400396 0.397000 0.400433 0.400429 8.48E-03 9.27E-05 8.07E-05

2.50 0.307974 0.305200 0.308031 0.308027 9.01E-03 1.85E-04 1.73E-04

2.75 0.196403 0.194400 0.196462 0.196460 1.02E-02 3.03E-04 2.90E-04

3.00 0.072620 0.071500 0.072690 0.072689 1.54E-02 9.54E-04 9.39E-04

3.25 −0.055677 −0.055800 −0.055611 −0.055611 2.21E-03 1.19E-03 1.20E-03

3.50 −0.180513 −0.179700 −0.180447 −0.180446 4.50E-03 3.63E-04 3.74E-04

3.75 −0.294125 −0.292300 −0.294070 −0.294066 6.21E-03 1.90E-04 2.01E-04

4.00 −0.389450 −0.386800 −0.389404 −0.389400 6.81E-03 1.19E-04 1.30E-04
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Table 3: Two-dimensional diffusion equation: MLS-1D-IRBFN solutions at the
interior point x = 0.8, y = 0.8 in comparison with those of BEM [9]
and 1D-IRBFN methods with the same time step ∆t = 0.25. The same
grid of 21× 21 is employed for 1D-IRBFN and MLS-1D-IRBF methods,
while a much finer mesh is used for BEM. The semi-discrete scheme
with fourth-order Runge–Kutta method for temporal discretisation is
employed. (1) 1D-IRBFN, (2) MLS-1D-IRBFN.

T Exact Numerical solution Relative error

BEM (1) (2) BEM (1) (2)

0.25 0.127314 0.126800 0.127315 0.127314 4.04E-03 6.45E-06 1.64E-06

0.50 0.246712 0.245300 0.246714 0.246712 5.72E-03 7.33E-06 2.14E-06

0.75 0.350771 0.348500 0.350774 0.350770 6.47E-03 7.65E-06 2.32E-06

1.00 0.433021 0.430000 0.433024 0.433020 6.98E-03 7.84E-06 2.43E-06

1.25 0.488347 0.484800 0.488351 0.488346 7.26E-03 7.97E-06 2.50E-06

1.50 0.513311 0.509400 0.513315 0.513309 7.62E-03 8.08E-06 2.57E-06

1.75 0.506359 0.502400 0.506363 0.506358 7.82E-03 8.19E-06 2.63E-06

2.00 0.467924 0.464100 0.467928 0.467923 8.17E-03 8.31E-06 2.69E-06

2.25 0.400396 0.397000 0.400400 0.400395 8.48E-03 8.45E-06 2.78E-06

2.50 0.307974 0.305200 0.307976 0.307973 9.01E-03 8.68E-06 2.91E-06

2.75 0.196403 0.194400 0.196404 0.196402 1.02E-02 9.14E-06 3.17E-06

3.00 0.072620 0.071500 0.072621 0.072620 1.54E-02 1.11E-05 4.28E-06

3.25 −0.055677 −0.055800 −0.055677 −0.055677 2.21E-03 4.19E-06 3.58E-07

3.50 −0.180513 −0.179700 −0.180514 −0.180513 4.50E-03 6.97E-06 1.94E-06

3.75 −0.294125 −0.292300 −0.294128 −0.294125 6.21E-03 7.50E-06 2.24E-06

4.00 −0.389450 −0.386800 −0.389453 −0.389449 6.81E-03 7.74E-06 2.37E-06

defined on a square domain 0 < x, y < 1, t > 0 and subject to Dirichlet boundary
conditions. The boundary and initial conditions can be derived from the analytical
solution uE = sinx sin y sin t.

In this example, the time step ∆t is taken based on the parameter d =
κ∆t/∆x2, where κ is the diffusion coefficient, presently κ = 1. The parameter
d is the ratio of time step ∆t to the characteristic diffusion time ∆x2/κ, which is
roughly the time required for a disturbance to be transmitted by diffusion over a
distance ∆x [8]. The parameter d is here chosen to be 100.

The grid convergence study and CPU-time requirement for both 1D-IRBFN
and MLS-1D-IRBFN based on the fully discrete framework with standard θ-
scheme for temporal discretisation are presented in Table 1. It can be seen that
the numerical solutions for both methods are converging well from the coarse
mesh to the fine mesh. MLS-1D-IRBFN yields the same order accuracy as that
of 1D-IRBFN, and offers a significant improvement in terms of efficiency when
dealing with fine meshes. Table 2 presents the numerical solutions of 1D-IRBFN
and MLS-1D-IRBFN methods at the interior point x = 0.8, y = 0.8 in comparison
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Table 4: One-dimensional advection-diffusion equation: MLS-1D-IRBFN solu-
tions at time t = 1 in comparison with those of DRBFN [3] and 1D-
IRBFN methods with the same grid of 17 and ∆t = 0.01. (1) 1D-IRBFN,
(2) MLS-1D-IRBFN.

x Exact Numerical solution Absolute error

DRBFN (1) (2) DRBFN (1) (2)

0.0625 0.998874 – 0.998880 0.998882 – 6.51E-06 8.44E-06

0.1250 0.902800 – 0.902804 0.902810 – 4.18E-06 9.95E-06

0.1875 0.815967 – 0.815970 0.815982 – 2.76E-06 1.51E-05

0.2500 0.737486 0.737486 0.737487 0.737506 9.89E-03 1.15E-06 1.98E-05

0.3125 0.666553 0.666554 0.666553 0.666576 8.45E-03 3.45E-07 2.27E-05

0.3750 0.602443 0.602444 0.602441 0.602467 6.37E-03 1.88E-06 2.41E-05

0.4375 0.544499 – 0.544495 0.544523 – 3.44E-06 2.43E-05

0.5000 0.492128 0.492129 0.492123 0.492151 1.78E-03 5.05E-06 2.36E-05

0.5625 0.444794 – 0.444787 0.444816 – 6.73E-06 2.22E-05

0.6250 0.402013 0.402014 0.402004 0.402033 1.82E-03 8.48E-06 2.02E-05

0.6875 0.363346 – 0.363336 0.363364 – 1.03E-05 1.77E-05

0.7500 0.328399 0.328400 0.328387 0.328414 3.66E-03 1.21E-05 1.48E-05

0.8125 0.296813 – 0.296799 0.296825 – 1.42E-05 1.15E-05

0.8750 0.268265 0.268266 0.268249 0.268272 4.01E-03 1.57E-05 7.34E-06

0.9375 0.242463 – 0.242444 0.242465 – 1.93E-05 1.85E-06

with those of BEM, which were published in [9] using the first-order finite
difference approximation for the time derivative and boundary element method
for spatial discretisation. The corresponding results of 1D-IRBFN and MLS-1D-
IRBFN based on the semi-discrete framework with fourth-order Runge–Kutta
method for temporal discretisation are described in Table 3. The same grid of
21 × 21 is used for 1D-IRBFN and MLS-1D-IRBF methods, while a much finer
mesh was used for BEM. It can be seen in these tables that the results of MLS-1D-
IRBFN and 1D-IRBFN methods are slightly different and both are more accurate
than that of BEM.

3.2 Example 2: One-dimensional advection-diffusion equation

The present method is here applied to solve the 1D advection-diffusion equation
∂u(x, t)/∂t = κ∂2u(x, t)/∂x2 + ν∂u(x, t)/∂x, defined on a domain 0 < x < 1,
t > 0 and subject to boundary and initial conditions u(0, t) = aebt, t > 0,
u(1, t) = aebt−c, t > 0, and u(x, 0) = ae−cx, 0 ≤ x ≤ 1. The problem has
an analytical solution uE = aebt−cx, where c = (ν +

√
ν2 + 4κb)/(2κ) > 0,

κ = 0.1, b = 0.1, a = 1.0, and ν = 0.1.
Table 4 presents the MLS-1D-IRBFN numerical solutions of the 1D advection-

diffusion equation at time t = 1s in comparison with those of DRBFN [3] and 1D-
IRBFN methods. The DRBFN result was obtained using implicit Crank-Nicholson
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Table 5: Forced vibration of simply supported beam: comparison of deflection w
at time t = 1s. (1) 1D-IRBFN, (2) MLS-1D-IRBFN.

x (cm) Exact Numerical solution Relative error

(1) (2) (1) (2)

5 −0.009151 −0.009140 −0.009143 1.24E-03 9.04E-04

10 −0.016306 −0.016289 −0.016293 1.05E-03 7.72E-04

15 −0.019916 −0.019891 −0.019896 1.24E-03 9.84E-04

20 −0.020138 −0.020109 −0.020114 1.45E-03 1.21E-03

25 −0.017585 −0.017560 −0.017564 1.44E-03 1.21E-03

30 −0.012916 −0.012898 −0.012901 1.44E-03 1.20E-03

35 −0.006820 −0.006809 −0.006810 1.70E-03 1.45E-03

Table 6: Forced vibration of simply supported beam: comparison of velocity v at
time t = 1s. (1) 1D-IRBFN, (2) MLS-1D-IRBFN.

x (cm) Exact Numerical solution Relative error

(1) (2) (1) (2)

5 1.558434 1.560281 1.561015 1.19E-03 1.66E-03

10 2.776816 2.779817 2.780941 1.08E-03 1.49E-03

15 3.391601 3.394314 3.395441 8.00E-04 1.13E-03

20 3.429398 3.430837 3.431784 4.20E-04 6.96E-04

25 2.994631 2.995018 2.995757 1.29E-04 3.76E-04

30 2.199611 2.199324 2.199909 1.31E-04 1.35E-04

35 1.161464 1.160977 1.161331 4.20E-04 1.15E-04

Thin Plate Spline scheme. For comparison purposes, 1D-IRBFN and MLS-1D-
IRBFN are implemented based on the fully discrete scheme with standard θ-
scheme for temporal discretisation, and using the same grid and time step as those
in [3]. It can be seen that the MLS-1D-IRBFN result is more accurate than that of
DRBFN, but slightly less accurate than that of 1D-IRBFN.
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Figure 2: Forced vibration of a simply supported beam.
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Figure 3: Steady state response of the mid-point of a simply supported beam, using
a grid of 81 and ∆t = 10−3.

3.3 Example 3: Forced vibration of a beam

This example deals with the dynamic behaviour of a simply supported beam
subject to a harmonic external force F (t) = f0 sin ωt applied at x = a, as
shown in Fig. 2 (where f0 = 100 N, ω = 100 rad/s and a = 10 cm). The
problem geometry and material parameters of the beam used here are: the length
of the beam aL = 40 cm, the cross-section area A = 1 cm2, the moment of
inertia I = 0.0833 cm4, Young’s modulus E = 300 GPa and material density
ρ = 732.4 kg/m3. The equation of motion for forced lateral vibration of a beam
is given by EI∂4w/∂x4 + ρA∂2w/∂t2 = f(x, t). The boundary and initial
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conditions for the simply supported beam can be described as w = 0, ∂2w
∂x2 = 0, at

x = 0, x = aL; w = 0, ∂w
∂t = v0, at t = 0. An analytical solution to this problem

can be found in [10].
Tables 5 and 6 present numerical results of the deflection and velocity of

the simply supported beam at time t = 1s, using a grid of 81 and time
step of 10−3. The fully discrete scheme with Newmark method for temporal
discretisation is employed here. It can be seen that MLS-1D-IRBFN yields more
accurate result for deflection than 1D-IRBFN, while 1D-IRBFN produces more
accurate result for velocity than MLS-1D-IRBFN. Fig. 3 shows the steady-state
responses of the forced vibration system using MLS-1D-IRBFN in comparison
with the analytical solutions. The numerical results are in good agreement with the
analytical solutions as shown in this figure.

4 Conclusion

A moving least square – one-dimensional-integrated radial basis function networks
approach based on the semi-discrete and fully discrete frameworks is developed
for time-dependent problems. Spatial discretisation is carried out using MLS-1D-
IRBFN and Cartesian grids, while the time derivatives are discretised using the
high order schemes (e.g. standard θ, fourth-order Runge–Kutta). The numerical
results obtained show that the proposed methods yield a high convergence order
of accuracy as that of 1D-IRBFN, while requires less computational effort. The
present methods have a promising capability to solve unsteady incompressible
viscous flow problems.
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