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Abstract 

Cylindrical tanks partially filled with liquid are the most general type of 
reservoirs for oil and other chemical-dangerous agent storage. Destruction of 
such tanks under seismic or impulsive load can lead to negative ecological 
consequences. The analysis method of dynamic behavior of cylindrical tanks 
partially filled with liquid that are under short-time impulsive load is under 
consideration. The method relies on reducing the problem of determining the 
fluid pressure to the system of singular integral equations. The coupled problem 
is solved using combination BEM and FEM. Differential equations of transient 
problem are solved numerically by Runge-Kutta method of 4th and 5th order. 
Numerical investigations of forced vibrations of the cylindrical tank filled with 
the incompressible fluid under seismic load have been carried out. 
Keywords: forced vibrations, fluid-structure interaction, seismic load, boundary 
and finite element methods. 

1 Introduction 

Practicing engineers face many issues and challenges on the design and seismic 
evaluation of liquid storage tanks [1–3]. Liquid storage tanks are important 
components of lifeline and industrial facilities. Ground-supported cylindrical 
tanks are used to store a variety of liquids: water for drinking and firefighting, 
crude oil, wine, liquefied natural gas (LNG), etc. Failure of tanks, following 
destructive earthquakes, may lead to environmental hazard, loss of valuable 
contents, and disruption of fire-fighting effort. Inadequately designed or detailed 
tanks have suffered extensive damage in past earthquakes and have resulted in 
disastrous effects. Earthquake damage to steel tanks can take several forms. 
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Large axial compressive stresses due to beamlike bending of the tank wall can 
cause “elephant-foot” buckling of the wall. Sloshing liquid near the free surface 
can damage the roof and upper shell of tank. High stresses in the vicinity of 
poorly detailed base anchors can rupture the tank wall. Base shears can 
overcome friction causing the tank to slide.  
     The forces on the tanks during an earthquake depend on the dynamics of the 
structure, fluid stored in the tank and of the founding soil. For dynamic behavior 
characterization of the containers partially filled with liquid two levels of 
interactions need to be studied. First being the interaction between the structure 
and liquid stored in the container. The second interaction is that between the 
structure and the foundation soil. The assumption of the base of the tank being 
fixed is valid if it is founded on hard rock.  
     Procedures for the seismic analysis and design of storage tanks are generally 
based on the Housner multicomponent spring-mass analogy. The analogy allows 
the complex dynamic behaviour of a tank and its contents to be considered in 
simplified form. The principal modes of response include a short period 
impulsive mode, with a period of around 0.5 seconds or less, and a number of 
longer period convective (sloshing) modes with periods up to several seconds. 
For most tanks, it is the impulsive mode, which dominates the loading on the 
tank wall. The first convective mode is usually much less significant than the 
impulsive mode, and the higher order convective modes can be ignored.  
     The dynamic analysis of shell structures is often performed by use of finite 
element (FE) programs [4]. But, such 3-D nonlinear finite element analysis, 
including the contained fluid as well as the foundation soil in the system, is 
complex and extremely time consuming. Several simplified theoretical 
investigations were also conducted and a few of these studies have been used as 
a basis for current design standards. In [5–9] authors offer the approach based on 
using the boundary element method to the problem of natural vibrations of the 
fluid-filled elastic shells of revolution, as well as to the problem of natural liquid 
vibrations in the rigid vessels. This approach has the certain advantages. In the 
basic equations the functions and their derivatives will be defined on the domain 
boundaries only. That allows reducing the order of dimension of problem. This 
method gives new qualitative possibilities in modeling the dynamic coupled 
problem. 

2 Problem statement 

Let us consider the coupled problem of dynamic behavior of an elastic shell of 
revolution partially filled with liquid subjected to short-time impulsive load 
(Figure 1). Also free and forced vibrations of such elastic and rigid shells are 
under consideration.  
     In this study the contained liquid is assumed to be inviscid and 
incompressible resulting in an irrotational flow field. Let 

zyx VVV ;; are the fluid  
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velocity vector components, then the incompressibility condition can be written 
as following 
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     Under these suppositions, there exists a velocity potential defined as  
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     Due to (1) potential  satisfies the Laplace equation 
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     The operator form of governing equations of motion for the liquid-structure 
system subjected to impulsive loading is given by  

 QPl  UMLU  , (2) 

where L, М are operators of elastic and mass forces of the shell; U = (u1, u2, u3) is 
the displacement vector; Q(t) is the vector of external surface load, Pl is 
hydrodynamic pressure. The hydrodynamic pressure, according to the Cauchy-
Lagrange integral, can be represented as follows 
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where  is the velocity potential, l is the fluid density, z is coordinate of a point 
in liquid counted in vertical direction, g is the gravitational acceleration. 
 

 

Figure 1: Cylindrical tank filled with liquid. 

     We denote a moistened surface of a shell through S1 and a free surface as S0 

(Figure 1). Let refer the Cartesian coordinate system 0xyz connected with a shell. 
The free surface of the liquid S0 coincides with the plane x0y in unperturbed 
state. When a liquid storage tank is subjected to a dynamic load the boundary 
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equations on the free surface are obtained by formulating dynamic and 
kinematics boundary conditions. The dynamic boundary condition is that the 
pressure on the free surface must be equal to the atmospheric one and the 
kinematics boundary condition is that liquid particles of the free surface remain 
on it during subsequent motion. 
     So we obtain the following boundary value problem 

Qgzl  UMLU , 
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for defining the unknown functions U and . 

3 The mode superposition method for coupled dynamic 
problems 

We will seek the natural modes of shell vibration in the fluid in the following 
form 
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where functions ),,( zyxuk are modes of natural vibrations in vacuum, )(tck  are 

unknown factors. 
     We will seek  as a sum of two potentials 
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     To determine 1 we obtain the following boundary value problem: 
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normal modes of natural vibrations in vacuum. 
     It would be noted, that from equation (3) and second one from (5) follows 

 )(),,(),,,( tczyxtzyx
m

k
kk




1
11  . (6) 

     To determine 1k we have the following boundary value problem: 
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     To determine 2 we will have the following relation  
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where functions 2k are the natural modes of fluid vibration in rigid vessel. Let 
us formulate the problem of fluid vibration in rigid vessel relative to some 
function r 
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     The last equation (8) follows from equation (3) and it is the dynamic 
condition on free surface. Differentiating this equation with respect to t we come 
to the following equation of fluid vibrations in the rigid vessel: 
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     Let us seek for the solution of mentioned problem in the next form  
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     For function  we will have the following problem of free harmonic fluid 
vibrations 
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     Solving of this problem one can obtain the number of eigenvalues k and 
corresponding natural modes, namely functions k. After equation (10) is solved 
we are looking for function 2 in the form 
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     Differentiating last equation with respect to t we come to the equation 
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     Due to orthogonality of natural modes of fluid vibrations in rigid vessel we 
have after dot product of equation (12) by functions l  
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     When functions k and k are obtained we substitute them in equation (2) and 
obtain the following equation 
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     Let us k, uk are natural frequencies and free vibrations modes of the shell in 
vacuum. Then the following relationships are valid 
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     Considering the result of dot product of equation (15) by uj and taking into 
account relationships (14) and (16), we come to the next set of n+m second order 
differential equations  
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     So we reduce the considered problem to the following. First, we have to 
obtain the natural frequencies and free vibrations mode shapes of the elastic shell 
in vacuum. The problem is solved using FEM. Second, it is necessary to obtain 
the frequencies and free vibrations modes of liquid in rigid shell under force of 
gravity. Then we define the frequencies and free vibrations modes of elastic shell 
without including the force of gravity. These two problems are solved using 
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BEM. And at the end we solve the set of second order differential equations 
using 4th and 5th order Runge-Kutta method. 

4 System of the boundary integral equations 

We use furthermore the cylindrical coordinate system and represent unknown 
functions as Fourier series by circumferential coordinate 

    cos, zrww ,      cos, zr . (18) 

     To solve the coupled hydro-elasticity problem it is necessary to determine the 
potentials 1 and 2 . 

     These problems here are reduced to the solution of the systems of singular 
integral equations. Determination of the potentials 1  was accomplished as in 

[10, 11]. So we obtain the following system  
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     Here the following notations are introduced 
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     Letting 0  in the above expressions, we obtain the standard elliptic first 
and second kind integrals. 
     To determine the potential 2  we have to obtain functions k.  Let us denote 

by 1k  the values of k on the wetted surface S1 and by 0k  the values of k on 
the free surface S0. Using the direct formulation of BEM to solve boundary value 
problem (10) and skipping for convenience an index k we can write the 
following system of singular integral equations 
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     Suppose that 
  cos),( zr  (21) 

we obtain for each harmonic term the following system of singular integral 
equations 
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     Here kernels  0.zz and  0, PP are defined in (20). 

     For numerical solution of system described by equations (19), (22) the 
boundary element method with constant approximation of unknown density on 
elements was used. 

5 Numerical results 

It would be noted that in the dynamic problem of horizontal seism we have to 
consider only 1  in expressions (18), (21) because only first circumferential 
mode is excited by seismic motion. 
     To validate the developed numerical algorithm the comparison with FEM 
results was accomplished. Let us consider a cylindrical shell with a flat bottom 
partially filled with the fluid. The geometry of the tank is shown in Figure 2 and 
the parameters are following: the radius is R=1m, the thickness is h=0.01m, the 
length L=2m, Young’s modulus E=2·105 MPa, Poisson’s ratio ν=0.3, the 
material’s density is ρ=7800 kg/m3, the fluid density ρl=1000 kg/m3. The filling 
level of the fluid is denoted as H. Boundary conditions are following: ur=uz=uθ=0 
to z=0 and r=R. 
     We analyze forced vibrations coupled problem. The radial load (Figure 3) is 
suddenly applied to cylindrical surface of the tank 
  )/exp(),(cos,, 0  tzrkqtzrq , where q0=0.1 МPa, τ=14.2·10-6 s. Time 

at the end 35 10 snt
  . 

     The radial displacement response was calculated in four points that are shown 
in Figure 3, point 1 (node 91) is situated in the wetted part of the wall, point 2 
(node 121) belongs to boundary of the liquid free surface, point 3 (node 69) is 
almost on the bottom whereas point 4 (node 161) is on the top of the wall. 
Figures 5-8 are representative of the forced motion response as calculated by the 
proposed method – solid lines and by the finite element complex – dash lines.  
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Figure 2: The scheme of the 
cylindrical tank.  

Figure 3: The scheme of nodes. 

 

 

Figure 4: Impulsive load. 

 

Figure 5: Time history of the radial displacement at the point 1. 
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Figure 6: Time history of the radial displacement at the point 2. 

 

Figure 7: Time history of the radial displacement at the point 3. 

 

Figure 8: Time history of the radial displacement at the point 4. 
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     The figures demonstrate good agreement of results obtained by different 
methods. That testifies the reliability of the method and algorithm proposed. 
     From previous investigation we found out that maximal radial displacement 
was in the point on the boundary between water and air (further “control point”). 
It will be interesting how the radial displacement at the control point will change 
subject to various filling levels of the fluid. So Figure 9 demonstrates the time 
history of the radial displacement at the control point when filling level of the 
fluid H=40 cm, H=80 cm, H=190cm. 
 

 

Figure 9: Time history of the radial displacement at the control point. 

6 Conclusions 

The numerical procedure based on a coupling the finite element formulation and 
the boundary element method is developed for the forced vibration analysis of 
shells of revolution with an arbitrary meridian partially filled with the fluid. We 
introduce the representation of the velocity potential as the sum of two potential 
corresponding to problem of the fluid free vibrations in the rigid shell and the 
one corresponding to problem of elastic shell with fluid without including the 
gravitational component. Integration by the fluid volume is reduced to integrals 
along the shell meridian and along the radius of the liquid free surface. It is the 
basic advantage of our method based on a combination of the boundary integral 
equations method, finite element method and expansion into Fourier series. The 
governing integral equations for each harmonic have been obtained. The forced 
vibration problem includes the liquid added masses into equations of motion. 
Numerical investigations of natural frequencies and forced vibrations of the 
cylindrical tank filled with the incompressible fluid have been carried out. 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

Boundary Elements and Other Mesh Reduction Methods XXXIII  295



Acknowledgements 

The authors gratefully acknowledge the sponsorship of this research by the 
Science and Technology Center in Ukraine in framework of the Project #4624. 
Authors also would like to acknowledge our STCU Project collaborators 
Professors Carlos Brebbia and Eduard Ventsel for their constant support and 
interest in our research.  

References 

[1] Sanchez-Sanchez, H., Cortes, S.C., Dominguez, A.M., Structural behaviour 
of liquid filled storage tanks of large capacity placed in seismic zones of 
high risk in Mexico// Proc. of 13th World Conference on Earthquake 
Engineering, Vancouver, B.C., Canada, 2004, Paper No. 2665. 

[2] Sanchez-Sanchez, H., Cortes, S.C., Seismic response of cylindrical tanks 
for oil// Proc. of 14th World Conference on Earthquake Engineering, 
Beijing, China, 2008. 

[3] Jhung, M.J., Jo, J.C., Jeong, S.J., Impact analysis of a water storage tank, 
Nuclear Engineering and Technology, 38(7), 2006. 

[4] Kubenko, V.D. & Koval’chuk, P.S., Nonlinear problems of the dynamics of 
elastic shells partially filled with a liquid. International Journal of Applied 
Mechanics, 36(4), pp. 421–448, 2000. 

[5] Amabili, M. & Paїdoussis, M. P., Review of studies on geometrically 
nonlinear vibrations and dynamics of circular cylindrical shells and panels, 
with and without fluid-structure interaction. Applied Mechanics Review, 
56(4), pp. 349–381, 2003. 

[6] Kumar, V. & Ganesan, N., Dynamic analysis of conical shells conveying 
fluid. Journal of Sound and Vibration, 310(1-2), pp. 38–57, 2008. 

[7] Malhotra, P. K., New method for seismic isolation of liquid-storage tanks. 
Journal of Earthquake Engineering and Structural Dynamics, 26(8),  
pp. 839–847, 1997. 

[8] Zhang, Y.L., Gorman, D.G. & Reese, J.M., Vibration of prestressed thin 
cylindrical shells conveying fluid. Thin-Walled Structures, 41,  
pp. 1103–1127, 2003. 

[9] Chen, Y.H., Hwang, W.S. & Ko, C.H., Numerical simulation of the three-
dimensional sloshing problem by boundary element method. Journal of the 
Chinese Institute of Engineers, 23(3), pp. 321-330, 2000. 

[10] Brebbia, C.A., Telles, J.C.F. & Wrobel, L.C. Boundary Element 
Techniques, Springer-Verlag: Berlin and New York, 1984. 

[11] Strelnikova E.,Yeseleva E., Gnitko V., Naumenko V. Free and forced 
vibrations of the shells of revolution interacting with the liquid// Proc. of 
XXXII Conference “Boundary elements and other mesh reduction 
methods” WIT Press, Transaction on Modeling and Simulation, 2010,  
P. 203-211. 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

296  Boundary Elements and Other Mesh Reduction Methods XXXIII


