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Abstract

The purpose of this article is to introduce a kind of data setting to handle radial
basis functions. Traditionally the meshless method RBF uses scattered data setting
to do interpolations. This approach faces two hard problems. First, the optimal
choice of the shape parameters contained in smooth radial functions are not easy
to find. Second, the crucial constant ω in the exponential-type error bound, which
is O(ω

1
d ), is too large, making this error bound meaningful only when the fill

distance d is extremely small. However, in the evenly spaced data setting, an error
bound of the form O(

√
dω

1
d ) is established where ω is much sharper than that of

the former one. What’s important is that whenever this error bound is adopted, the
optimal choice of the shape parameter can always be found with the fill distance d
of reasonable size.

We express the effect of the shape parameter c by explicitly defined functions
and present concrete criteria of the optimal choice of c, which do not require too
many data points.
Keywords: radial basis function, shifted surface spline, shape parameter,
interpolation.

1 Introduction

This article is intended only to open a window for the topic of choosing the shape
parameter optimally. We try to avoid mentioning complicated theory and heavy
techniques. Rather, we present concrete criteria of choosing the shape parameter.

The smooth RBFs, multiquadric, inverse multiquadric, gaussian, and shifted
surface spline, all contain a shape parameter, usually denoted by c. Recently Cheng
made a comprehensive study of its choice for MQ, IMQ and GA in Cheng [1],
while the choice of c in the shifted surface spline was missing. We therefore focus
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on this kind of RBF whose theoretical properties are equally complicated. This
function is defined as follows.

h(x) := (−1)m(|x|2 + c2)
λ
2 log (|x|2 + c2)

1
2 , λ ∈ Z+, m = 1 +

λ

2
, c > 0,

x ∈ Rn, λ, n even, (1)

where |x| is the Euclidean norm of x, log denotes the natural logarithm, and λ, c
are constants. The constant c is called shape parameter whose optimal choice is a
big problem. In order to provide a simple and concrete insight into our approach,
we will deal with the case λ = 2 only.

Then, for any scattered set of data points (x1, f(x1)), . . . , (xN , f(xN )), there
is a unique function

s(x) :=
N∑

j=1

cjh(x − xj) + p(x) (2)

interpolating these data points, where c1, . . . , cN are constants to be determined
and p(x) is a polynomial of degree ≤ m − 1. The only requirement for the data
points is that x1, . . . , xN should be polynomially nondegenerate.

The interpolated functions belong to two function spaces.

Definition 1.1. For any σ > 0, the class of band-limited functions f in L2(Rn) is
defined by

Bσ := {f ∈ L2(Rn) : f̂(ξ) = 0 if |ξ| > σ},
where f̂ denotes the Fourier transform of f .

A larger function space is defined as follows.

Definition 1.2. For any σ > 0, the class of educated functions is

Eσ := {f ∈ L2(Rn) :
∫

|f̂(ξ)|2e |ξ|2
σ dξ < ∞},

where f̂ denotes the Fourier transform of f . For each f ∈ Eσ , its norm is

‖f‖Eσ :=
{∫

|f̂(ξ)|2e |ξ|2
σ dξ

} 1
2

.

Although we restrict our interpolated functions to the two classes, other
functions can be handled by triangle inequality. For example, as pointed out in
Wendland [2], any function in the Sobolev space can be interpolated well by a
band-limited function. Then we use s(x) to interpolate that band-limited function
at the same data points.

Different from Cheng’s approach, we require that the data points be evenly
spaced in the following sense.
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Let E be an n-dimensional simplex in Rn with vertices v1, . . . , vn+1. For any
point x ∈ E, its barycentric coordinates are the numbers λ1, . . . , λn+1 satisfying

x =
n+1∑
i=1

λivi,

n+1∑
i=1

λi = 1, λi ≥ 0 for all i.

The definition of simplex can be found in Fleming [3].
For any n-dimensional simplex, the evenly spaced points of degree k are the

points whose barycentric coordinates are of the form

(k1/k, k2/k, . . . , kn+1/k), ki nonnegative integers and k1 + · · · , kn+1 = k.

The interpolation occurs in a simplex and the centers(interpolation points) are
evenly spaced points of that simplex. A simplex is just a line segment, triangle and
tetrahedron in dimensions 1, 2, and 3, respectively.

2 The optimal choice of c

Before introducing our criteria we need some basic definitions.

Definition 2.1. The constant ρ is defined as follows.

(a) Suppose n > 5. Let s = �n−5
2 �. Then

ρ = 1 +
s

7
.

(b) Suppose n ≤ 5. Then ρ = 1.

For any b0 > 0, let δ0 = b0
6 . Then for any 0 < δ ≤ δ0, let c0 = 72ρδ and

c1 = 12ρb0.

Obviously c0 ≤ c1. This article explores the optimal choice of c in [c0,∞).
Based on the complicated theory developed in Luh [4–6], we know that there is

a function called MN function which forms the essential part of the upper bound
of |f(x) − s(x)|. It’s defined by

MN(c) =



√

8ρc
1−n

4 e
c

[
σ
2+

ln 2
3

24ρδ

]
if c0 ≤ c ≤ c1

√
2
3b0

c
3−n

4 e
cσ
2
(
2
3

) b0
2δ if c1 ≤ c < ∞

(3)

for f ∈ Bσ, and

MN(c) =



√

8ρc
1−n

4 supξ∈Rn

{
|ξ| 3+n

4 e
c|ξ|
2 − |ξ|2

2σ

}(
2
3

) c
24ρδ if c0 ≤ c ≤ c1

√
2
3b0

c
3−n

4 supξ∈Rn

{
|ξ| 3+n

4 e
c|ξ|
2 − |ξ|2

2σ

}(
2
3

) b0
2δ if c1 ≤ c < ∞

(4)
for f ∈ Eσ .

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

Boundary Elements and Other Mesh Reduction Methods XXXIII  267



The optimal choice of the shape parameter is then the value minimizing MN(c).
Theorem 2.3 of Luh [6] tells us that for any b0 > 0 and simplex Q0 of diameter

b0, there is a good bound for |f(x) − s(x)| with domain a simplex Q ⊆ Q0 of
diameter r ≤ b0. The map s(x) interpolates f(x) at x1, · · · , xN which are evenly
spaced points of degree k − 1 in Q satisfying k = r

δ where δ ≤ δ0 can be any
positive number.

We divide the criteria into two classes.

2.1 Band-limited functions

For f ∈ Bσ , we have the following cases, where T := σ
2 + ln 2

3
24ρδ .

Case1. n = 1 and T ≥ 0 For any b0 > 0 and positive δ < b0
6 , if n = 1 and

T ≥ 0, the optimal choice of c for c ∈ [c0,∞) is to let c = c0 := 72δ.

Reason: In this case MN(c) in eqn.(3) is increasing on [c0,∞).

Numerical Example:

8.0 8.5 9.0 9.5 10.0
c
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MN�c�

Graph of the MN function with ∆�0.1

Figure 1: Here n = 1, σ = 1 and b0 = 1.

Case2. n = 1 and T < 0 For any b0 > 0 and positive δ < b0
6 , if n = 1 and

T < 0, the optimal choice of c for c ∈ [c0,∞) is c∗ ∈ [c0, c1] which minimizes
MN(c) of eqn.(3) on [c0, c1].

Reason: In this case MN(c) in eqn.(3) is increasing on [c1,∞).
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Numerical Example:
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Graph of the MN function with ∆�0.01

Figure 2: Here n = 1, σ = 1 and b0 = 1.

Case3. n > 1 and T < 0 For any b0 > 0 and positive δ < b0
6 , if n > 1 and

T < 0, the optimal choice of c ∈ [c0,∞) is the value c∗ ∈ [c1,∞) which mini-
mizes MN(c) in eqn.(3) on [c1,∞).

Reason: In this case MN(c) in eqn.(3) decreases on [c0, c1].

Remark: In Case3 if n ≤ 3, MN(c) will be increasing on [c1,∞) and c∗ = c1.

Numerical Example:
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Graph of the MN function with ∆�0.01

Figure 3: Here n = 2, σ = 1 and b0 = 2.
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Now we introduce the last case of band-limited functions.
Case4. n > 1 and T ≥ 0 For any b0 > 0 and positive δ < b0

6 , if n > 1 and
T ≥ 0, the optimal choice of c ∈ [c0,∞) is either c∗ ∈ [c0, c1] or c∗∗ ∈ [c1,∞),
depending on MN(c∗) ≤ MN(c∗∗) or MN(c∗∗) ≤ MN(c∗), where c∗ and c∗∗

minimize MN(c) in eqn.(3) on [c0, c1] and [c1,∞), respectively.

Reason: In this case MN(c) in eqn.(3) may not be monotonic on both [c0, c1] and
[c1,∞). However, if n ≤ 3, MN(c) will be increasing on [c1,∞) and c∗∗ = c1.

Numerical Example:
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Graph of the MN function with b0�103

Figure 4: Here n = 2, σ = 1.127 and δ = 0.03.

2.2 Educated functions

We now deal with functions in Eσ .

Case1. n ≤ 3 For any b0 > 0 and positive δ < b0
6 , if n ≤ 3, the optimal choice

of c ∈ [c0,∞) is c∗ ∈ [c0, c1] which minimizes MN(c) in eqn.(4) on [c0, c1].

Reason: In this case MN(c) is increasing on [c1,∞). Hence its minimum value
happens in [c0, c1].
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Numerical Example:
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Graph of the MN function with ∆�0.007

Figure 5: Here n = 2, σ = 1 and b0 = 1.

Case2. n > 3 For any b0 > 0 and positive δ < b0
6 , if n > 3, the optimal

choice of c ∈ [c0,∞) is either c∗ ∈ [c0, c1] or c∗∗ ∈ [c1,∞), depending on
MN(c∗) ≤ MN(c∗∗) or MN(c∗∗) ≤ MN(c∗), where c∗ and c∗∗ minimize
MN(c) in eqn.(4) on [c0, c1] and [c1,∞), respectively.

Reason: In this case MN(c) may not be monotonic on both [c0, c1] and [c1,∞).

Numerical Example:
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Graph of the MN function with ∆�0.007

Figure 6: Here n = 4, σ = 1 and b0 = 1.
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