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Abstract

We propose a nonlinear minimization method of fundamental solutions for the
detection (shape, size and location) of unknown inner boundaries corresponding to
either a rigid inclusion or a cavity inside a linear elastic body from nondestructive
boundary measurements of displacement and traction. The stability of the numer-
ical method is investigated by inverting measurements contaminated with noise.
Keywords: Cauchy–Navier equations, method of fundamental solutions, regular-
ization.

1 Introduction

The method of fundamental solutions (MFS) [1, 2] is a meshless boundary
collocation method [3] which may be used for the numerical solution of certain
boundary value problems. The method has become increasingly popular over the
last three decades primarily because of the ease with which it can be implemented.
A comparison between the MFS and the boundary element method (BEM), as
applied to direct problems, has been performed in [4]. In recent years, the MFS has
been used extensively for the numerical solution of inverse problems primarily. An
extensive survey of the applications of the MFS to inverse problems is provided in
[5]. The most difficult class of inverse problems are the so-called inverse geometric
problems in which the location and shape of part of the boundary of the domain
of the problem in question are unknown and need to be calculated as part of the
solution. The MFS was used for the first time for the solution of inverse geometric
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problems in linear elasticity in [6], while more recent applications may be found
in [7, 8].

2 Mathematical formulation

In practical nondestructive evaluation (testing) of materials the following inverse
problem naturally arises: Given an elastic body Ω, detect an unknown inclusion
D ⊂ Ω from measurements of the traction and displacement taken on the boundary
∂Ω. This situation commonly arises, for instance, in fracture mechanics when
some defects stem from the manufacturing process, or when the elastic properties
of the material deteriorate due to the occurrence of possible damage [9].

In mathematical terms, and considering, for simplicity, a two-dimensional
isotropic and homogeneous elastic simply-connected bounded body Ω ⊂ R

2, our
goal is to determine the displacement u = (u1, u2) and an inclusion D compactly
contained in Ω, i.e. D ⊂ Ω, such that Ω\D is connected, satisfying the Cauchy–
Navier equations (Lamé system) of elasticity
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(1a)

subject to the Cauchy boundary conditions on the outer boundary ∂Ω

ui = fi, i = 1, 2 on ∂Ω, (1b)

ti = gi, i = 1, 2 on ∂Ω, (1c)

and either homogeneous Dirichlet conditions

ui = 0, i = 1, 2 on ∂D, (1d)

or homogeneous Neumann conditions

ti = 0, i = 1, 2 on ∂D, (1e)

on the inner boundary ∂D. Here fi and gi, i = 1, 2 are known displacements and
tractions, respectively, G is the shear modulus, ν = ν in the plane strain state and
ν = ν

/
(1+ν) in the plane stress state, where ν is Poisson’s ratio. According to [6],

the homogeneous Dirichlet conditions (1d) on the inner boundary ∂D physically
describe a rigid inclusion, while the homogeneous Neumann conditions (1e) on
∂D characterise a cavity.
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The strain tensor ε = (εij)i,j=1,2 is related to the displacements by the
kinematic relations, i.e.
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while the stress tensor σ = (σij)i,j=1,2 is related to the elements of the strain
tensor according to Hooke’s law by

σ = 2G


ε11 +

ν

1 − 2ν
(ε11 + ε22) ε12

ε21 ε22 +
ν

1 − 2ν
(ε11 + ε22)


 . (3)

Finally, the tractions ti, i = 1, 2 in (1c) are defined by [t1, t2]
T = σn, where

n = [n1, n2]
T denotes the outward normal vector to the boundary. Equations (1a)

may be written more compactly as ∇ · σ = 0.
Note that the boundary ∂Ω is overspecified since both the displacements and

tractions are prescribed on it through equations (1b) and (1c). Consequently, we
cannot expect that a solution to the above inverse problem exists for arbitrary
Cauchy data f and g. However, the following uniqueness result holds.

Theorem. [6] Let D ⊂ Ω ⊂ R
2 be open, bounded and simply connected domains

with smooth boundaries such that the domain of elastic propagation Ω\D is
connected. Let also the Dirichlet and Neumann data f and g in (1b) and (1c)
be such that f ∈ [H1/2(∂Ω)]2 and g ∈ [H−1/2(∂Ω)]2.

(i) If f �≡ 0 then a single pair of Cauchy data (f ,g) determines (identifies)
uniquely the displacement u ∈ [H1(Ω\D)]2 and the rigid inclusion D satisfying
the inverse Dirichlet problem given by equations (1a)-(1d).

(ii) If f �∈ span{(1, 0), (0, 1), (−y, x)}(x,y)∈∂Ω then a single pair of Cauchy
data (f ,g) determines (identifies) uniquely the displacement u ∈ [H1(Ω\D)]2

and the cavity D satisfying the inverse Neumann problem given by equations (1a)-
(1c) and (1e).

Remarks:
(a) The condition in (ii) above says that f does not belong to the linear space of

rigid displacements on ∂Ω and it can be replaced by the condition g �≡ 0.
(b) The inverse inclusion problems under investigations are further ill-posed

because they are unstable, i.e. small noisy errors in the input data (1b) and/or
(1c) cause large errors in the solution (u, D).
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3 The method of fundamental solutions (MFS)

We approximate the displacements ui, i = 1, 2 by the MFS approximations [6–8]

uN
i (x, ξ; α, β) =

2N∑
j=1

αjUi1(x, ξj) +
2N∑
j=1

βj Ui2(x, ξj), x ∈ Ω\D, (4)

where ξ = (ξj)j=1,N are the singularities located in D while ξ = (ξj)j=N+1,2N

are the singularities located outside Ω. The vectors α = (αj)j=1,...,2N ,
β = (βj)j=1,...,2N contain unknown real coefficients to be determined. The
displacement fundamental solution matrix U = (Uij)i,j=1,2 associated with the
points x = (x, y) and ξ = (ξx, ξy) is given in [10].

On combining the kinematic relations (2), Hooke’s law (3) and the MFS
approximations for the displacements (4), the following MFS approximations for
the tractions ti, i = 1, 2 are obtained

tNi (x, ξ; α, β) =
2N∑
j=1

αj Ti1(x, ξj) +
2N∑
j=1

βj Ti2(x, ξj), x ∈ ∂Ω ∪ ∂D, (5)

where the traction fundamental solution matrix T = (Tij)i,j=1,2 is given in,
e.g. [10].

3.1 Parametrization of the unknown boundary and choice of the boundary
collocation and source points

Without loss of generality, we assume that the known outer boundary ∂Ω is a circle
of radius ro. Then, the outer boundary collocation and source points can be chosen
as

xN+k = ro(cos(ϑk), sin(ϑk)), ξN+k = ηoro(cos(ϑk), sin(ϑk)), k = 1, N,
(6)

where ϑk = 2π(k − 1)/N , k = 1, N , and ηo > 1 is fixed.
We further assume that the unknown rigid inclusion or cavity D is a star-shaped

domain with respect to the origin. The more general case in which the center
of the star-shaped domain D is unknown can also be investigated with no major
modifications, see [11]. Thus we can parameterize the boundary ∂D as

x = r(ϑ) cos ϑ, y = r(ϑ) sin ϑ, ϑ ∈ [0, 2π), (7)

where r is a 2π−periodic function. The collocation form of (7) in two dimensions
becomes

rk = r(ϑk), k = 1, N, (8)

and we choose the inner boundary and source points as

xk = rk(cosϑk, sin ϑk), ξk = ηintxk, k = 1, N, (9)

where ηint ∈ (0, 1) is fixed.
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3.2 Penalized least-squares minimization

The coefficients α = (αj)j=1,2N , β = (βj)j=1,2N and the radii r = (rj)j=1,N
can be determined by imposing the boundary conditions (1b)-(1d), or (1b), (1c)
and (1e). We thus have a total of 6N equations in 5N unknowns. Note that the
inverse inclusion problem under investigation is linear in the coefficients α and β,
but it is nonlinear in the radii r.

In the case of the inverse geometric problem (1a)-(1d) associated with the
detection of the unknown rigid inclusion D, the penalized least-squares functional
to be minimized is given by the sum of the residual and the regularization terms,
namely,

S(α, β, r) = Res(α, β, r) + Reg(α, β, r)

=
2∑

i=1

2N∑
j=1

[
uN

i (xj , ξ; α, β) − fi(xj)
]2

+
2∑

i=1

2N∑
j=N+1

[
tNi (xj , ξ; α, β) − gi(xj)

]2

+ µ1
(|α|2 + |β|2)+ µ2

N∑
�=2

(r� − r�−1)
2 , (10)

where fi(xj) ≡ 0 for i = 1, 2 and j = 1, N , and µ1, µ2 > 0 are regularization
parameters. The functional (10) is minimized subject to the simple bounds on the
variables

0 < rm < ro, m = 1, N. (11)

In (10), the last two terms, included in order to achieve stability, correspond to
penalising the �2−norm of the coefficients α and β, and the H1−discretised norm
of the smooth obstacle radii r.

The Cauchy data given on ∂Ω in the boundary conditions (1b) and (1c) come
from practical measurements which are inherently contaminated with noisy errors,
and therefore we replace fi and gi by fp

i and gp
i , i = 1, 2, respectively, generated

as

fp
i (xj) = (1 + ρf

j pu)fi(xj), i = 1, 2, j = N + 1, 2N, (12)

gp
i (xj) = (1 + ρg

jpt)gi(xj), i = 1, 2, j = N + 1, 2N, (13)

where pu and pt represent the percentage of noise added into the displacements
and tractions on ∂Ω, respectively, and

(
ρf

j

)
j=N+1,2N

and
(
ρg

j

)
j=N+1,2N

are
pseudo-random noisy variables drawn from a uniform distribution on [−1, 1] using
the NAG [12] routine G05DAF. Since the inverse problem under investigation is
ill-posed being unstable, i.e. small errors pu and/or pt in the data (12) and/or (12)
cause large errors in the solution for ∂D, the C1−smoothness regularization term
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involving µ2 was added in order to achieve stability. In addition, the regularization
term involving µ1 was added in order to deal with the ill-conditioned MFS system
of equations.

The minimization of (10) is carried out using the MINPACK routine lmdif
which minimizes the unconstrained sum of squares of nonlinear functions. The
simple bound constraints (11) are imposed during the iterative procedure by
adjustment at each iteration. The initial guess for the unknowns has been taken
arbitrarily to be α(0) = β(0) = 0 and r(0) = 1. The Jacobian is calculated
internally using forward finite differences.

3.3 Regularization

In order to obtain a stable solution, regularization of the numerical solution can
be accomplished by one of the following two approaches. In a first instance, if no
regularization terms are included in the objective functional (10), i.e. µ1 = µ2 = 0,
then, according to the discrepancy principle, we stop the iterations involved in the
process of minimization once the residual Res(α, β, r) becomes less than the
amount of noise, i.e.

Res(α, β, r) ≤ ε :=
2∑

i=1

2N∑
j=N+1

{
[fp

i (xj) − fi(xj)]2 + [gp
i (xj) − gi(xj)]2

}
.

(14)
However, we do not know whether the minimization routine lmdif which is

employed has a regularization character which justifies this stopping criterion. In
order to add some rigour into the stability of the numerical solution, we consider
next including some positive regularization parameters µ1 and µ2 in (10). Then the
iteration process does not need to be stopped, i.e. it can be left to run until a user
specified tolerance, say of 10−10, is achieved or a maximum number of function
evaluations, maxfev, is reached. However, one still has to choose appropriately
the regularization parameters µ1 and µ2 and this can be done either based on
the above discrepancy principle, or on the more heuristic L-curve or L-surface
criterion, see [13, 14].

4 Numerical example

We consider an example for which an analytical solution is available (see [8]) in
order to assess the accuracy and stability of the proposed method. In particular, we
consider an isotropic linear elastic medium, e.g. copper alloy, characterised by the
material constants ν̄ = ν = 0.34 and G = 3.35 × 1010N/m2, and occupying the
two-dimensional annular domain Ω \ D, where

Ω =
{
(x, y) ∈ R

2|x2 + y2 < r2o
}

, D =
{
(x, y) ∈ R

2|x2 + y2 < r2int

}
, (15)
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where 0 < rint < ro. We also consider the following exact solution for the
displacements

u1(x, y) =
1

2G(1 + ν)

[
V (1 − ν) − W (1 + ν)

1
(x2 + y2)

]
x, (16)

u2(x, y) =
1

2G(1 + ν)

[
V (1 − ν) − W (1 + ν)

1
(x2 + y2)

]
y, (17)

where (x, y) ∈ Ω\D and

V = −σor
2
o − σintr

2
int

r2o − r2int

, W =
(σo − σint)r2or2int

r2o − r2int

, σo, σint ∈ R. (18)

The corresponding stress tensor is given by

σij(x) =
[
V + (−1)i+1W

x2 − y2

(x2 + y2)2

]
δij+2W

xy

(x2 + y2)2
(1−δij), i, j = 1, 2.

(19)
By choosing

σo =
[
(1 + ν) + (1 − ν)

r2int

r2o

]
σint

2
, σint = 1.0 × 1010N/m2,

in expressions (16)-(19), we have that u1 = u2 = 0 on the inner boundary of the
circular rigid inclusion ∂D. For these dimensional quantities, in order to have the

N=16 N=24 N=32

N=48 N=64 N=72

Figure 1: Results for various N with no noise and no regularization.
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nfev=103 nfev=5  103 nfev=104

nfev=5  104 nfev=105 nfev=2  105

Figure 2: Results for various values of nfev with pt = 5% noise and no
regularization.

first two terms to be minimized in (10) of the same order of magnitude, we weigh
the second term accordingly.

We conducted numerical experiments with rint = 2 and ro = 4, for different
values of N in the case of no noise (pu = pt = 0) and no regularization
(µ1 = µ2 = 0). The maximum number of function evaluations was set to
maxfev=105 and we fixed ηint = 0.2, ηo = 2. From the results presented in
Figure 1, it appears that the MFS is highly accurate.

Next, in order to investigate the stability of the numerical solution, we fix
N = 64 and include pt = 5% random noise in the input traction data (12). For
simplicity, we consider no noise in the input displacement data (12), i.e. pu = 0.
In Figure 2, we present the plots of the reconstructed boundary ∂D obtained with
no regularization for various numbers of function evaluations nfev. Since the
problem under investigation is ill-posed, when no regularization is employed, an
unstable solution is expected and, from Figure 2, it can be observed that as nfev
increases beyond a certain threshold so does the instability. In this case, in order
to obtain a stable solution one needs to stop the iterative process at the first nfev
at which the discrepancy principle (14) is satisfied. In Figures 3 and 4 we present
plots of the reconstructed boundary of the rigid inclusion when regularization is
included in (10), namely, µ1 > 0, µ2 = 0, and µ1 = 0, µ2 > 0, respectively. In
comparison with Figure 2 where no regularization was employed, from Figures 3
and 4 it can be seen that improved stable results are obtained if regularization is
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1
=0, nfev=105

1
=10 6, nfev=6758

1
=10 5, nfev=9003

1
=10 4, nfev=52991

1
=10 3, nfev=19278

1
=10 2, nfev=105

Figure 3: Results for various values of µ1 with noise pt = 5% noise.

2
=0

2
=10 4

2
=10 3

2
=10 2

2
=10 1

2
=1

Figure 4: Results for various values of µ2 with pt = 5% noise.
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included. Interestingly, different values of the regularization parameter µ1 > 0 in
Figure 3 had the effect of producing a number nfev, for which the convergence
of (10) was reached, less than the prescribed maxfev = 105. Improved stable
and accurate results were obtained for µ1 = O(10−5) ÷ O(10−3). In contrast,
for various values of µ2, nfev reached maxfev = 105. Even so, the numerical
results obtained with µ2 = O(10−3) ÷ O(101) in Figure 4 seem stable and
reasonably accurate.

5 Conclusions

The MFS has been formulated for the solution of inverse inclusion problems
arising in two-dimensional linear elasticity. The numerical experiments in the case
of a rigid inclusion yield accurate results for exact data, but instabilities appear
when noise is introduced into the input data. Regularization can be achieved either
by appropriately limiting the number of functional evaluations, or by introducing
penalty terms in the objective cost functional that is minimized. The extension of
the proposed technique to inverse inclusion problems in three-dimensional linear
elasticity, [15], is deferred to a future work.
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