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Abstract 

This paper presents a fundamental solution (FS) based finite element (FE) 
formulation for analyzing the axisymmetric thermal behavior of composites 
enhanced with carbon nanofibers (CNFs) or carbon nanotubes (CNTs), which are 
modeled by a cylindrical representative volume element (RVE). The proposed 
approach utilizes the axisymmetric FS to construct an intra-element approximate 
field within the element and describes the element boundary field using 
conventional shape functions. A new hybrid variational functional is developed 
to establish a linkage between the independent intra-element field and the 
element boundary fields and generate the final force-displacement equations. 
Several numerical examples are considered to assess the efficiency and accuracy 
of the proposed model. The results show that the radius of the nanofiller and the 
thickness of the interface have little effect on thermal conductivity of the 
composites, whereas the length of the nanofiller and the material parameters of 
the interface play an important role in the effective thermal conductivity of the 
composites. 
Keywords: nanocomposites, fundamental solution, hybrid FEM, thermal 
conductivity, cylindrical representative volume element. 

1 Introduction 

Over the past decades, nanomaterials have been used increasingly as ideal 
additives to polymers, due to their excellent thermal, mechanical, and electrical 
properties over conventional fillers like carbon fiber and glass fiber [1]. Here we 
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direct our attention to the thermal analysis of CNF/CNT reinforced composites to 
simulate the heat dissipation in them, rather than their mechanical simulation. 
     Currently, the effective thermal properties of nanocomposites have been 
studied by utilizing experimental techniques [2], molecular scale simulation (i.e. 
a molecular dynamics (MD) approach [3]), and continuum mechanical models 
[4]. Among studies based on continuum models, very little numerical work has 
been carried out to predict the thermal property of nanocomposites. Nishimura 
and Liu [5] analyzed the thermal behavior of nanocomposites embedded with 
rigid CNT inclusions by the boundary integral equation (BIE) method with the 
help of fast multipole expansion. Zhang et al. [6] developed a hybrid boundary 
node method (BNM) for a multi-domain model, in which both polymer matrix 
and CNT were modeled separately and the necessary continuity condition on the 
interface of matrix and CNT was required, and a simplified single-domain model 
with the assumption that the surface temperature of the CNT filler keeps constant 
[7]. Singh et al. [8] studied the thermal behavior of nanocomposites by the 
element-free Galerkin method (EFGM). Furthermore, interphases formed due to 
chemical reactions between the CNT/CNF and matrix, or the use of protective 
coatings on the filler during manufacturing, can significantly affect the overall 
thermal properties of composites. Singh et al. [9] applied the EFGM to analyze 
interface effects by adjusting interface thickness and interface material 
parameters. 
     In the present work, a new hybrid FE formulation called HFS-FEM is 
developed to analyze the size effect of CNT/CNF and the interface effect on the 
overall thermal conductivity of nanocomposites. As an extension of our previous 
works [10–12], in the current computational model, a nanoscale axisymmetric 
cylindrical representative volume element (RVE) containing a single centered 
effective solid nanofiber is considered. The FS of axisymmetric problems are 
employed to construct the intra-element temperature field and an independent 
frame field along the element boundary is defined using conventional shape 
functions. Then, a new hybrid variational functional is presented to link two 
assumed fields and to generate the final solving system including boundary 
integrals only. During the solution process, no any hypersingular integral is 
involved, though the FS is used, and the element shape can theoretically be 
arbitrary.  
     The paper begins with a basic description of axisymmetric heat conduction 
problems in a nanoscale cylindrical RVE in Section 2. Then, the derivation of the 
proposed approach is described in Section 3 to provide full insight into the 
hybrid FE model. The effects of the dimensions of the nanofiller, including its 
length and diameter, as well as the interface between the nanofiller and matrix 
are analyzed numerically in Section 4 and some concluding remarks are 
presented in Section 5. 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

192  Boundary Elements and Other Mesh Reduction Methods XXXIII



2 Mathematical model for axisymmetric problems 

2.1 General mathematical model of axisymmetric heat conduction 

Without loss of generality, consider heat conduction in an orthotropic anisotropic 
homogeneous medium. In a cylindrical coordinate system ( , ,r z ) the governing 
equation can be expressed as 
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and the heat flux components related to the temperature gradient are modeled by 
Fourier’s law given in the following formulation 
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where rk , k  and zk  denote the thermal conductivity along the r,   and z 

directions, respectively; u is the sought temperature field in terms of spatial 
cylindrical coordinate ( , , ).r z x  

     When there is an axisymmetric geometry and boundary conditions about a 
reference axis, say z axis, that is, all quantities such as temperature and heat flux 
components are independent of the circumferential direction (   direction), the 
governing equation (1) for three-dimensional cases reduces to 
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     To keep the system solvable, temperature and heat flux boundary conditions 
should be added 

 ,   on  ;    ,    on  .u qu u q q     (4) 

where ,i i iq k u n   is the boundary normal heat flux, where in the axisymmetric 

model the subscript i represents the coordinates r (i=1) and z (i=2), respectively. 

in  are the direction cosines of the unit outward normal vector n to the boundary 

u q     of the domain of interest, and u  and q  are specified functions on 

the corresponding boundaries, respectively. For convenience, the space 
derivatives are indicated above by a comma, i.e. , / .ru u r    

     For multi-material problems, the interface continuity conditions for 
temperature and heat flux should be complemented, i.e. for the subdomains i  

and j  with different thermal properties ik  and jk , respectively. On the 

interface i j   we have continuity of temperature and reciprocity of heat flux 

 ,       0.i j i ju u q q    (5) 
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2.2 Nanoscale cylindrical representative volume element (RVE) 

In the present work, a nanoscale cylindrical RVE (see Fig. 1a) is used to evaluate 
the effective thermal conductivity of the nanocomposites. The nanofiller is 
placed symmetrically at the center of the cylindrical RVE such that the axis of 
the RVE of interest coincides with the axis of the nanofiller. Assume that there is 
perfect bonding on the interface between the nanofiber and the interphase, and 
the interphase and the surrounding matrix. The top and bottom surfaces of the 
RVE are maintained at two different constant temperatures u1 and u0, 
respectively, and the outer surface is kept insulated. In Fig. 1, the cylindrical 
RVE has length L and radius R0, and the nanofiber has length l and radius r0. 
     Because the specified geometry and boundary conditions are axisymmetric, a 
simplified 2D axisymmetric computational model is chosen as a typical rotating 
plane shown in Fig. 1b, which will be solved by means of the hybrid FE model 
developed in the present work. 
 

 

Figure 1: Nanoscale axisymmetric cylindrical RVE containing single CNT. 

     According to Fourier’s law, the thermal conductivity along the z-direction is 
defined as  
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which can be used to determine the effective thermal conductivity ke of the 
nanocomposite in the direction parallel to the fiber alignment by simply 
adjusting as 
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where ave
zq  denotes the average values on the data-collection surfaces, i.e. the top 

and bottom surfaces of the cylindrical RVE. In Eq. (6), the fact that while the 
temperature varies linearly along the z-direction, then the heat flux component 

zq  remains constant, has been used.  

2.3 FS for axisymmetric model 

The FS is critically important for implementation of the proposed algorithm. If 
the medium is isotropic, that is r zk k k  , the FS for axisymmetric problems is 

usually derived by integrating the FS of three-dimensional steady-state heat 
conduction along the circumstance direction [13] and setting the source point 

( , )s s sr zx  on the Oxz  plane. As a result, we obtain 
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where ( , )r zx  is a field point to be considered,  is the distance between the 

field point and source point, and k(m) represents the complete elliptic integral of 
the first kind. 

3 FS based FE formulation 

In this section, a hybrid FE model with FS as an intra-element trial function is 
developed for the boundary value problem (BVP) defined by Eqs. (3) and (4).  

3.1 Non-conforming intra-element field 

Motivated by the idea of the method of FS (MFS) [14] to remove the singularity 
of the FS, for a particular element e occupying sub-domain e , the intra-element 

temperature field is extracted from a linear combination of FS, that is, 

      
1

, ,         , .
sn

e sj ej e e e sj e
j

u G c


    x x x N x c x x  (9) 

where cej is undetermined coefficients and ns is the number of virtual sources 
outside the element e, which can be generated by the formulation in literatures 
[10–12]. 
     To guarantee the requirement of 0srr   in the evaluation of the elliptic 

integrals of the first and second kinds, the local coordinate system ( , )r z
 

 must be 

employed, whose origin can be determined by means of the minimum values of 
the coordinates of source points. 
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     The corresponding normal heat flux on e  is given by 
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3.2 Auxiliary conforming frame field 

In order to enforce conformity on the field variable u, for instance, e fu u  on 

e f   of any two neighboring elements e and f, an auxiliary inter-element 

frame field u  is used and expressed in terms of the same degrees of freedom 
(DOF), ed , as used in conventional FEM 

     ,        .e e e eu  x N x d x  (12) 

where eN  represents the conventional shape functions used in conventional 

FEM.  

3.3 Modified variational principle and stiffness equation 

For the BVP defined in Eqs. (3) and (4), since the stationary conditions of the 
traditional potential or complementary variational functional cannot guarantee 
satisfaction of the inter-element continuity condition required in the proposed 
HFS FE model, a modified potential functional is developed as follows:  
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in which the governing equation (3) is assumed to be satisfied, a priori, due to 
the use of FS as intra-element trial functions. 
     Having independently defined the intra-element field and frame field in a 
particular element e, the next step is to generate the element stiffness equation by 
substituting those fields into the proposed functional (13). 
     Due to the constant coefficient   appearing in Eq. (13) having no effect on 
the final result, it is discarded. As a result, the variational functional me  

without the heat generation G can be rewritten as 
 

 

 
2 2

1
d d d .

2 e qe e
me r zA

u u
k k r A qur u u qr

r z  

                        
     (14) 

     Applying the Gaussian theorem to the element functional (14), we finally 
have the following functional defined on the element boundary 
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which, by substituting Eqs. (9), (10) and (12) into the functional (15), yields 
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     Minimization of the functional e  with respect to ec  and ed , respectively, 

gives 
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from which the optional relationship between ec  and ed , and the stiffness 

equation, can be produced 
 
 1,        .e e e e e e e

K d = g c = H G d  (19) 

where T 1
e e e e

K = G H G  stands for the element stiffness matrix. 

     Assembling the element stiffness matrix eK  and the right-hand vector eg  

gives the following set of equations 

 .Kd = g  (20) 

where K, d and g are global quantities. 

4 Numerical results and discussion 

In this section, the proposed axisymmetric hybrid FE model for the thermal 
analysis of the cylindrical RVE is first validated by comparing the results 
obtained to those from ABAQUS. Then, the hybrid model is applied to study the 
effects of nanofiber and the interphase on the effective thermal conductivity of 
the resulting composites. The material elastomer S160, having a thermal 
conductivity 0.56 W/mK, is chosen as matrix, while the nanofiber is assumed to 
have a thermal conductivity 1000 W/mK. The thermal property of the interphase 
is assigned over the interval [0.01 1] 0.56  W/mK. Additionally, for the sake 

of convenience, the remaining data used in the analysis is tabulated in Table 1. 
     In the calculation, a total of 160 eight-node elements with 569 nodes are used 
to model the computing domain for different cases, i.e. 1.25nmit   and 

2.5nmit  , illustrated in Fig. 2, in which the red region represents the interface 

elements, the yellow region denotes the nanofiber elements, and the white region 
represents the matrix elements. The computing codes are written in MATLAB 
and used to evaluate the HFS-FEM results of the problem. 
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Table 1:  Geometry and boundary conditions for cylindrical RVE. 

Parameters Values 
RVE length L 100nm 

RVE radius 0R  10nm 

Nanofiber length l 25nm, 50nm, 75nm, 100nm 

Nanofiber radius 0r  2.5nm, 5nm, 7.5nm 

Interface thickness it  1.25nm, 2.5nm 

Temperature at the upper surface 1u  100K 

Temperature at the lower surface 0u  200K 

 

 

Figure 2: Two mesh divisions used for HFS-FEM. 

4.1 Validation of the proposed approach 

To validate the proposed algorithm, the temperature distributions in the RVE 
considered are calculated and compared with those from ABAQUS, in the 
absence of an interfacial layer. Since the thermal conductivity of the filler is 
about 1786 times higher than that of the matrix, this difference is sufficient to 
permit most of the heat flux to pass through the fiber portion of the composites. 
To examine the thermal effect in the cylindrical system, the length and radius of 
the fiber are assumed to be 50nm and 5nm, respectively. Fig. 3 plots the 
temperature distribution along the line 0,  5,  7.5,  10r  nm, and all results are 
compared to those from ABAQUS with the same meshes. As expected, there is a 
reasonably good agreement between them. Moreover, the temperature 
distribution for the case without the filler is also provided in Fig. 3 to 
demonstrate the effect of the filler. It can be clearly seen that the presence of the 
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filler assists in reducing the overall temperature in the lower region 
( 0 2z L l   ), whereas the overall temperature in the upper region, that is 

2 2L l z L   , increases, compared to the corresponding temperature without 
fiber. Simultaneously, we also find that the temperature in the fiber is almost 
constant (about 149.8K). Moreover, near the tip of the fiber, the temperature 
changes at a more rapid rate than the surface temperature of the filler.  
 

    

                            (a) r =0nm                                          (b) r =5nm 

  
                             (c) r =7.5nm                                        (d)  r =10nm 

Figure 3: Temperature distribution with 50l  nm and 0 5r  nm. 

4.2 Effect of nanofiber size on thermal properties of the composites 

To investigate the size effect of the nanofiber on the overall thermal properties of 
the nanocomposite in the absence of an interfacial layer, two different cases are 
considered. In the first case the length of the nanofiber is kept constant and its 
radius changes; for example, we take 50l  nm and 0r  2.5nm, 5.0nm and 

7.5nm. The results given in Fig. 4 show that an increase in the radius of the fiber 
induces a larger value of the effective thermal conductivity ek  of the composites. 

However, this effect is not very significant as the effective thermal property of 
the nanocomposite changes only slightly even when the radius is increased from 
2.5nm to 7.5nm. 
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Figure 4: Effect of nanofiber radius on the effective thermal conductivity of 
nanocomposite with constant length 50l  nm. 

     In contrast, the length of the fiber has a more significant effect on the 
effective thermal conductivity ek . The results in Fig. 5 show that for a given 

radius 0 5nmr  , when the length l of the filler increases from 25nm to 100nm, 

that is, the filler extends through the matrix, the ratio /e mk k  rapidly increases 

from 1.3 to 14.5.  

 

Figure 5: Effect of nanofiber length on the effective thermal conductivity of 
nanocomposite with constant radius 0 5r  nm. 

4.3 Effect of the interphase on effective thermal conduction 

To investigate the interface effect on the thermal conductivity of the 
nanocomposites, various values of interface conductivity and thickness are 
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considered. In the computation, the length and radius of the fiber remain 
invariant at 50nm and 5nm, respectively, while the thermal conductivity of the 
interphase changes in the range [0.01, 1]×0.56 W/mK, making the thickness of 
the interphase 1.25nm and 2.5nm, respectively. Fig. 6 shows the variation of 
effective thermal conductivity ek  of the composites by considering the existence 

of interphase. It can be seen that the interface thickness has an insignificant 
effect on the effective property of the composite. Furthermore, variation of the 
interface property has a significant effect on the effective conductivity of the 
composite, and a decrease in the value of interface conductivity induces a 
decrease in the overall conductivity of the composite. 
 

 

Figure 6: Effect of interface thickness and conductivity on the effective 
thermal conductivity of the composite. 

5 Conclusion 

In this paper an axisymmetric model of heat conduction in a cylindrical RVE is 
developed and used to study the effective thermal properties of nanocomposites. 
The proposed hybrid FE formulation involves element boundary integrals only, 
by virtue of use of the FS of the problem as an intra-element trial function. Using 
the proposed model, the effective thermal conductivity is calculated for various 
model parameters, including various sizes of nanofiller, and various thickness 
and material parameters of the interface. The numerical results show that the 
surface temperature of the nanofiller remains almost constant during heat 
transfer, and the overall thermal properties of the nanocomposites are affected 
largely by the length of the nanofiller and the material parameters of the 
interface, but only slightly affected by the radius of the nanofiller and the 
interfacial thickness. 
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